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2 THE CENTRAL FORCE PROBLEM Ch. 1

simultaneously satisfy the Egs. (1.1) over an interval of
time.

The special case when the law of attraction is Newton’s
law of gravitation is the most important. In this case
f(r) = pr=2, where p is a positive constant depending only
on the units chosen and on the particular source of
attraction. The Egs. (1.1) become

F=v, ¥=-wr (12)

2. THE CONSERVATION OF ANGULAR
MOMENTUM: KEPLER’S SECOND LAW

Let us now assume that (1.1) is satisfied for some interval
of time by the pair of functions r(¢), v(r) which we write
simply as r, v. From the second equation of the pair we
conclude that

rXv=—f(Nrrxr)=0,

since the cross-product of a vector with itself is zero.
Therefore, the derivative of the vector r X v, which is
r X v+ v Xy, vanishes identically. Hence,

rXv=c, (2.1

where ¢ is a constant vector. The vector mc is called the
moment of momentum and its length mc the angular
momentum of the particle. We ignore these refinements
and refer to either ¢ or ¢ as the angular momentum. The
assertion (2.1) is known as the conservation of angular
momentum.

An important consequence of the principle can be de-
duced immediately. According to (2.1) we have ¢ - r = 0. If
¢ # 0, this means that r is always perpendicular to the
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fixed vector ¢. Consequently, if ¢ # 0, all the motion takes

place in a fixed plane through the origin perpendicular to c.
If ¢=0, a little more subtlety is needed. Let u be a

differentiable vector function of time and u its length.

Since #*=u-u, it follows that wi=u-. Therefore, if

u # 0, we have '

ul —uu

u2

4 u_
dt u

_ (uru)u— (u-u)u

>
u}

d u_ (uxu)Xu
dt w3 ’
according to the vector formula
(@axb)yXec=(a-c)b—(b-c)a.
As an application of (2.2), let u =r. Then (2.2) becomes

i[___(rxv)xr=c><r, @2.3)
a r P P

by (2.1). Therefore, if ¢ =0, the vector r/r is a constant,
and the motion takes place along a fixed straight line
through the origin.

In case ¢ # 0, another important consequence can be
deduced from (2.1). Introduce into the plane of motion a
polar coordinate system centered at O and forming a
right-handed system with the vector c. (See Fig. 1.) Then
r=[rcos@,rsin §,0] and ¢ = [0, 0, c]. A simple compu-
tation shows that (2.1) yields r2§ =c. According to the
calculus, the rate at which area is swept out by a radius
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vector from O is just 1720, Therefore the particle sweeps
out area at the constant rate c/2. This fact is Kepler’s
second law.

EXERCISE 2.1. Set up the equations of motion of a
particle moving subject to two distinct centers of
attraction, each with its own law of attraction.

EXERCISE 2.2. Suppose that a particle subject to
attraction by a fixed center starts from rest, i.e., that
at some instant /=0 we have v=0. Then by (2.1)
¢=0 and the motion is linear. Suppose, moreover,
that f(r) is positive for 0 < r < 0. Prove that the
particle must collide with the center of force in a
finite length of time ¢,

EXERCISE 2.3. In the preceding problem, can you tell
where the particle will be at each instant of time
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between 0 and 1,? First try the case f(r)=pur~? (in-
verse cube law), then f(r) = ur~? (inverse square law).

3. THE CONSERVATION OF ENERGY

So far we have found a vector ¢ which remains constant
throughout a particular motion. There is another constant
of the motion which is of major importance, this time a
scalar quantity called the energy. To find it, start with the
second of Egs. (1.1) and take the dot product of each side
with v. We obtain

Vo= —f()r (),

= —-f(r)r"rr'
= —fn
- f(r) dt
Integration of both sides yields
1o?=f(r)+h, (E8))

where f,(r) is a function whose derivative is —f(r) and 4 is
a constant. The function f|(r) is determined convention-
ally this way:

1) = [ fxds

where (i) a is chosen as + oo if the integral converges; (ii)
a is chosen to be 0 if the first choice leads to a divergent
integral but the second does not; (iii) a is chosen to be 1 if
the first two choices fail. Thus, if f(r) is of the form
f(ry=pr~P, then a= fp>lLa=0if p<l;a=1if
p = 1. The most important case is that of Newton:

fry=w  f)=pt
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With the above convention the function —mf,(r) is known
as the potential energy and is denoted by the symbol — (/.
The quantity T=muv?/2 is called the kinetic energy, and
h, = mh the energy. The statement (3.1) becomes

T=U+h,, (3.2)
and is known as the principle of conservation of energy.

EXERCISE 3.1.  Show that if f(r) = ur~", where Pl
then a particle moving with negative energy cannot
move indefinitely far from O.

EXERCISE 3.2. Show that if f(r)=pur~?, then fi(n
=mp—D"'""Pif p# 1 and h(n=nplog 1/r if
p=1L

*EXERCISE 3.3, Leta=r,b=v in the standard vector
formula

(a-b)*+ (a x b)?= %2
Conclude that
vt =2+ 2,

What is the physical meaning of the components
and ¢/r of v? Show that the law of conservation of
energy can be written

riP +ct= 2r2[ fi(r) + h].

4. THE INVERSE SQUARE LAW: KEPLER’S
FIRST LAW

In this section we shall assume that the particle is moving
according to Newton’s law of gravitation. The governing

|
[
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equations are then (1.2), which we repeat here for con-
venience as

F=v, v=-—u (4.1

It turns out that, in addition to the vector ¢, there is
another important vector which remains constant
throughout the motion. It does not have a name in
astronomical literature. We shall call it the eccentric axis
and denote it by the symbol e. To derive it, start with the
formula (2.3) and multiply both sides by —p. Then

N 3
B &R~ ).

According to the second of Egs. (4.1), this becomes

d r _ .
L ;=VXe

Integration of both sides yields
r
,u(e+ ;)=v><c, (4.2)

where e is a constant of integration.
Since r-¢ =0, it follows that e - ¢ = 0. Hence, if ¢ # 0,
the vectors e and ¢ are perpendicular, so that e lies in the

plane of motion. If ¢ =0, r/r= —e, so that e lies along
the line of motion; in this case the length e of e is al-
ways 1.

We shall now find the interpretation of e when ¢ # 0.
Take the dot product of both sides of (4.2) with r. Then

e r+ry=r-vXec=rxv-c=c-c.
Consequently,

e-r+r=c/u (4.3)
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There are two cases. If e =0, then r = ¢?/p, a constan.
Therefore the motion is circular. Moreover, according to
the formula r?p? =r%? + ¢ of Ex. 3.3, it follows that
ro=c, v=yp/c, so that the particle moves with constant
speed. By the law of conservation of energy, v’/2
= p/r+h. Therefore h= —pu?/2¢* a negative number.
Observe finally that 27 = U.

Suppose now that e # 0. In the plane of motion indi-
cated by Fig. 1, introduce the vector e as shown in Fig. 2.
The fixed angle from the x-axis to e will be denoted by w.
If (r, 0) represents a position Q of the particle, the angle
6 —w will be denoted by f- The same position of the
particle can then be represented as (r, f) if e is used as the
axis of coordinates. It follows that e - r = er cos fand Egq.
(4.3) becomes

/p

. l+ecos [’

(4.4)

Consider the dotted line L in Fig. 2 drawn at a distance
¢*/pe from O, perpendicular to e and on the side of O to
which e is directed. Equation (4.4), which can also be

2
written r = e( -C—e —r cos f), simply says that the distance
[

of the particle at Q from O is e times its distance from L.
Consequently, the particle moves on a conic section of
eccentricily e with one focus at O. This is Kepler’s first law.

As (4.4) shows, the value of r is smallest when f=0,
since e > 0. Therefore the vector e is of length equal to the
eccentricity and points to the position P at which the
particle is closest to the focus.

There is some traditional terminology used by the
astronomers that the reader ought to know. The position
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P is called the pericenter, the angle f the true anomaly.
Various names are given to the pericenter, according to
the source of attraction at O. If the source is the sun, P is
called perihelion; if the earth, perigee; if a star, periastron.
In the study of the solar system, the x-axis of Fig. 1 is
fixed by astronomical convention. In that case, « is the
argument of pericenter.

We return to the geometry. The word orbir will be used
to describe the set of positions occupied by the particle
without any indication of the time at which a particular
position is occupied. From the theory of conics it follows
that if 0 < e < 1 the orbit falls on an ellipse; if e= 1, on a
parabola; and if e > 1, on a branch of hyperbola convex
to the focus. Remember that in each case ¢ > 0.

Since 720 = ¢ and 6 =, it follows that /> 0, so that the
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orbit is traced out in the direction of increasing f. This is
indicated by the arrows on the curve in Fig. 2.

*EXERCISE 4.1. Show that if 0<e<1 or e> | the
semi-major axis of the corresponding conic has length
a given by the formula

pale® — 1| = 2.
EXERCISE 4.2.  Use (4.2) to obtain the formula

ye=(vz— —;L—)r-(r-v)v.

5. RELATIONS AMONG THE CONSTANTS

We pause at this point to remind the reader of some basic
facts about differential equations. Let Hzyoios2) i
=1,..., n represent n functions with continuous first
partial derivatives in some region of n-dimensional space,

and let (§,,...,¢,) be a particular point of this region.
Then the system of differential equations

Li=flzn...,2), i=1,...,n (5.1)

will have a unique solution z{(t) defined in a neigh-
borhood of ¢ =0, such that z(0)=¢,i=1,...,n.

Now consider the basic Egs. (1.1) with the additional
assumption that f has a continuous derivative. This in-
cludes the special cases f(r) = ur=”. Each of the two Egs.
(1.1) stands in place of three scalar equations, so that the
pair constitutes a system of order six of the form 5.1).
Specifically, let x, y, z denote the components of r in a
rectangular coordinate system and let a, B, v denote the

Sec. 5 RELATIONS AMONG THE CONSTANTS 11

components of v. The equations become

P

i=y

&= =[x
3= —fr)r”ly
==

where r? = x?+ )2+ 22 It follows that there is a unique

solution satisfying six prescribed values of x, y, z, a, 8, v
at 1 = 0. In vector form this says that the system (1.1) has
a unique solution r(s), v(r) taking on prescribed values
Iy Vo at time 7=0. These values can be prescribed ar-
bitrarily.

In the special case f(r) = ur~2, we have found that each
of the quantities ¢, e, & remains constant during the
motion and is therefore determined by its value at ¢ = 0:

€ =ry XV,

= -1
e=p"'(vg X €)= rg'rg
h=1v}— pryt.

Since ¢, e, h constitute seven scalar quantities, it follows
that there must be relations among them. We have already
seen that there is a relation between ¢ and e, namely
c-e=0. Therefore at most six of the seven quantities can

- be independent. Actually there is still another relation

among the seven which reduces the number to five; it will
be seen later that no further reduction is possible.
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To obtain the new relation, square both sides of Eq.
(4.2). Since v is perpendicular to ¢, we can replace (v X ¢)?
by v?c? to obtain

y.z(e + £ )2= vc?

g
or
y.z(e2+ %e'r+ l) = v’
Replace v by 24 + (2u/r) and e - r by (c2/p) — r, accord-
ing to Eq. (4.3). Then
pi(e* — 1) = 2hc2. (5.2)

Notice that this agrees with the earlier results that e = | if
c=0and h=—p?/2cif e=0.

Equation (5.2) has the following mmportant con-
sequences. If ¢ # 0, then e< 1, e=1or e> ] according
to whether the energy 4 is negative, zero, or positive. If
h # 0and ¢ # 0and ais the semi-major axis of the conic
(see Ex. 4.1), then

a=1 " (53)

From this and the energy formula Lo =(p/P+h, we
obtain these basic formulas:

uz=p(3+l) it h>0;
a
P if i O (5.4)

) ifh<0.

|
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These formulas still hold if ¢ =0 provided we adopt (5.3)
as the definition of a; we shall do so.

EXERCISE 5.1. What can you say about the orbit if
f(ry=—pr™? rather than f(r)=pr~22? This corre-
sponds to a repulsive force rather than an attraction.

eXERCISE 5.2. Use (5.4) to prove that in the case of
elliptical motion the speed of the particle at each
position Q is the speed it would acquire in falling to
Q from the circumference of a circle with center at O
and radius equal to the major axis of the ellipse.

*EXERCISE 5.3.  The area of an ellipse is 7a*(1 — €2)'/2.
We already know that if ¢ # 0 the particle sweeps
out area at the rate ¢/2. Combine these facts to show
that if 0 < e < 1 the period p of a particle, that is, the
time it takes to sweep out the area once, is given by

the formula p = (27/Vu )a*/% This is Kepler's third

law.

*EXERCISE 5.4. Define the moment of inertia 2/ by
the formula 27 =mr?. Write r>=(r-r) and prove
that

I=2T—-U=T+h =U+2h,

In the case of circular motion 7 is constant so that
2T = U, a result we already know from Sec. 4.

EXERCISE 5.5. (Hard.) Use the preceding exercise > to
prove thatif ¢ # 0, & > 0, then r/|¢| approaches y2h
as [t|— 0. (The hypothesis ¢ # 0 rules out the
possibility of a collision with the origin in a finite
time.)

ﬁ
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6. ORBITS UNDER NON-NEWTONIAN
ATTRACTION

The elegant method used in Sec. 4 to obtain orbits is
essentially due to Laplace (who, however, did not have the
vector concept available to him). It is applicable specifi-
cally to Newton’s law of attraction. In the general case
another method must be used. We know that if c=0 the
orbit is linear, so we shall assume that ¢ # 0. Moreover,
we assume that f(r) has a continuous derivative.

Let us first dispose of the case of circular motion r = Foi
By the principle of conservation of energy, v is also a
constant v, so the motion is uniform. The normal ac-
celeration in the plane of motion is v2/r, and this must be
balanced by the attraction f(ry). Therefore, v§=r0f(r0)_
Since the velocity vector is perpendicular to the radius
vector, it follows from rXv=c that rv=c. Hence,
"ol = ¢, 50 that ¢ = 13 f(r,). On the other hand, according
to Ex. 3.3, the law of conservation of energy can be
written

P2+ ¢ =20 fi(r) + h]. (6.1)

Since /=0, we conclude that ¢? = 2rd fi(ro) + h). There-
fore, circular motion implies the two relations

F=rfir) =23 fi(r)+h].  (62)

Conversely, we shall show that if (6.2) holds for the value
of r at some instant of time, say =0, then the particle
moves uniformly in a circle of radius ro- According to
(6.1), the second of Egs. (6.2) implies that 7, = 0.

We interrupt the argument at this point to obtain an
important general formula, Starting with the equation
r®=r-r, we obtain ri=r-y by differentiation. Another

Sec. 6 ORBITS UNDER NON-NEWTONIAN ATTRACTION 15
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fferentiation yields r7 +/ =(r-v)+ (v-v)=(r-v) +0%

gﬁ{er(es:ee Ex. 33) o*=/#+c%72 so that ri=(r-v)+

-2 Since V= —f(r)r"'r, we have (rz- V= —fr'rr
= —rf(r). Therefore r¥ = —rf(r) + ¢*r~2, or, finally,

P = = f(0). (63)

We resume the argument. According to the first of Egs.
(6.2), Eq. (6.3) has the constant solution r = r,,. Moreover,
since the values of r and r at +=0 are given, .th.e
uniqueness theorem described in Sec. 5 tells us that this is
the only possible solution. This completes the case of

ircular motion.
c“]crlll lthe general case it is customary to start vxfith 6.3)
and remove the dependence on time by subs'titutlon_gr'om
+2 = c. Specifically, let r=p~'. Then #¢ = —p i =
—p 2§ = —p~*p'cr~*= —cp/, where the prime () df'.
notes differentiation with respect to 6. Hence ¥ = —cp’'f
= —c?p”p% Equation (6.3) becomes

o +p= c-2p~2f( . ) (64)

In general, this cannot be solved for p in terms of. 0 in any
recognizable form and we content ourselves with some
special cases. .

Suppose first that f(r)=ur~2, the Newtonian case.
Then p” +p=p/c® It follows that p has the form
(p/c*+ A cos @+ Bsin # and its reciprocal r has the
form demanded by (4.4), since f= 60 — w. .

Another easy case is f(r) = w2 Then p” +p=pc~%
or p”+ (1 —pc™?)p=0. The solutions of this are well
known.

EXERCISE 6.1. Classify the solutions in the case f)
=™ according to the sign of 1— pc~2 What if
1 —pc™2=0?




