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5.9 Exponential Growth and Decay 77
some applications of the exponc function, Cogy

In this section, We explore ! e
quantity P (1) that depends exponenually on

s “jy H ", k’
The constant k has units of “inverse time; p@t) = Poe

it is measured in days, then k has units of
e . ; is called the growth ¢
If k > 0, then P(t) grows exponennally and k is calle g onstant. Nt
is the initial size (the size at? = 0):
P0) = Py = Po

We can also write P (1) = Pob' withb = &, because b = (b = k.

A quantity that decreases exponentially is said to have exponential decay. In
we write P(1) = Poe " with k > 0: k is then called the decay constant,

Population is a typical example of a quantity that grows exponentially, at legg;,
suitable conditions. To understand why, consider a cell colony with initial pop
Py = 100 and assume that each cell divides into two cells after 1 hour. Then popul
P(1) doubles with each passing hour:

P(0) = 100 (initial population)

P(1) = 2(100) = 200 (population doubles)
P(2) = 2(200) = 400 (population doubles again)

t hours, P(z) = (100)2".

» \ lihe labmmfoi'y the number of Escherichia coli bacteria (Fig
th m@mmm of k = 0.41 (hours) ~'. Assume that 100
S et '

P(t) at time ¢.

2

) = 100062417 (t in hous!
9. Bec: ug,ethenumbewfh



E 3C puter simulation of

‘ decay as a random process. The
are atoms that have not yet
fraction of red squares

h unit of time. (Caumsy@"
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If y is a differentiable function satisfying the differential equation

then y(t) = Pye*’, where P, is the initial value Py = y(0).

Proof Compute the derivative of ye ™. If y' = ky, then

d

E(ye—kl‘) - yie—kt _ ke—k!y 0 (ky)e"-kf " ke—kty =
Because the derivative is zero, y(1)e %" = Py for some constant Py, and y() = Pyet!
claimed. The initial value is y(0) = Ppe’ = P,. L

CONCEPTUAL INSIGHT Theorem 1 tells us that a process obeys an exponential law pi'er
cisely when its rate of change is proportional to the amount present. This he!
understand why certain quantities grow or decay exponentially. :
A population grows exponentially because each organism contributes to growth
through reproduction, and thus the growth rate is proportional to tﬁ@“ on
However th1s is tme only under certm conditions. If the in
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The constant k has units of time~!, so the
doubling time T = (In2)/k has units of
time, as we should expect. A similar
calculation shows that the tripling time is
(In 3)/k, the quadrupling time is (In4)/k,
and, in general, the time to n-fold increase
is (Inn)/k.

. gess an important p! here i,

Quantities that grow exPo“e“‘igzszrs every time intery al hT. T](: ;rd Ot

: in St u_ OVay &
time T such that P (1) B the equation pat+T)= Ve

let P(t) = Poet' and solve for §
Poek(?+T) — ZPOe

T =12

We obtain kT = In2 or T = (In 2)/ k.

n the doubling time of P jg

Doubling Time If P(1) = Poek! with k > 0, the

In2

—_— —

Doubling tim X

® EXAMPLE 4 Spread of the Sapphire Worm o —
Worm spread throughout the Internet on January 25, 2003 (Figure 5). Studies sy
that during the first few minutes, the population of infected computer hosts inCre;g
exponentially with growth constant = 008155 .

b v WV ia‘s the doubling time of the virus?

e hosts were infected after 2 miny

~ &j s (Figure 6).

cted hosts after ¢ seconds is P (1) = 4" Afe

ere infected, so the exponential

f-life is the time ¥



" ericanchemist Willard Libby
it . jeveloped the technique of
% 1946 10 determine the age
P mnniwas awarded the Nobel Prize
;nsﬂ]i.ﬂ“ for this work in 1960. Since
ol cnique has been refined
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! dating (Figure 8) rej M|

. ting (Fig es on the fact th ivi i i
g 1 he at all living organisms contain carbon that ik

the carbon dioxide absorbed by plants from the atmosphere.
made up of nonradioactive C'2 and a minute amount of
0 nitrogen. The ratio of C!* to C!2 is approximately Ram =

rbon in the atmosphere is
radioactive C' that decays int

10—12,

m th?;ir;j)rsl;(;:g dblul.l\:l?vgh organism has the same ratio Rqun because this carbon originates
C™ begins 1o deca: - en t'he organism dlelsé its carbon is no longer replenished. The
of Cl4 o C12 ; Y €xponentially while the C'? remains unchanged. Therefore, the ratio

in the organism decreases exponentially. By measuring this ratio, we can

determine when the death occurred. The decay constant for C!* is k = 0.000121 year™!,
50

Ratio of C'* to C2 after ¢ years = Rype™ 00001211

= .EXAMPLE 6 Cave Paintings In 1940 a remarkable gallery of prehistoric animal
paintings was discovered in the Lascaux cave in Dordogne, France (Figure 9). A charcoal
sample from the cave walls had a C'*-to-C2 ratio equal to 15% of that found in the
atmosphere. Approximately how old are the paintings?

Solution The C'*-to-C!2 ratio in the charcoal is now equal to 0.15 Rym, 50

Rame 000012l _ o 15

where ¢ is the age of the paintings. We solve for z:

e—0.000121t =

In(0.15)
—0.000121t =In(0.15) = t= T 15,700
The cave paintings are approximately 16,000 years old (Figure 10). [ |

% of C !4 remaining
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Principal +  Interest Balang,
i
Note*
After 1 year  Fo sl r£0 [ 47) Po1 +r) }me salm
After 2 years  Po(1+ r) + rhol Po(l 4,2 | pesoS: y
After ¢ years Po(1+r)'—] + rP@+ry = Pl 4y
Suppose that interest is paid out quarterl)'/ (every 3 mOllTh»‘j ). Then the intereg,
after 3 months is ; Po dollars and the balance 1ncreaies by the factor (1 + o Afferelamfc
(four quarters), the balance increases to Po (1 + r)" and after 1 years, Yo
i 4
Balance after 7 years = Po (1 + Z)
For example, if Po = $100 and r = 0.09, then the balance after 1 year is 1o the i
n
0.09\* g different
100 (1 + S ) — 100(1.0225)* &~ 100(1.09308) ~ $109.3 prime 2!
discussic
one rate.

More generally,

Compound Interest If Py d ited i

0 dollars are deposited into an account earning i
annual rate r, compounded M time e
@ p M times yearly, then the value of the account after e,

P(t) =A(1+5) "

called the yearly multiplier.

} Eﬁ:;iuem @mPO-Unding. What happens in the i '
s answered by the next theorem (a proof is gier’

R
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_ A second method of proof of Theorem 2 is to apply the methods of Section 4.5 to
lim f(x)8W),

X—> 00 which, when we take f(x) = 1 + and g(x) = x, is an indeterminate
form of type 1°°.

5.9 SUMMARY

Exponential growth with growth constant k > 0: P(t) = PyeX". oy i
Exponential decay with decay constant k > 0: P(t)' = P@_,-“k‘ ‘

The solutions of the differential equatlu i
Cek', where C is a constant.

A quantity P(f) grows expc
ig, if P@) = kP(t)

The doubling time for ex
both ual to .‘_i_i':'; 2)/.




y" = —0.7y and the initial condition y(0) = 10.
11. The decay constant of cobalt-60 is 0.13 year—!. Find its half-life.
12. The half-life radium-226 is 1622 years. Find its decay constant.

13. One of the world’s smallest flowering plants, Wolffia globosa (Fig-
ure 13), has a doubling time of approximately 30 hours (h). Find the
growth constant k and determine the initial population if the population
grew to 1000 after 48 h.

FIGURE 13 The tiny plants are Wolffia, with plant bodies smaller than
the head of a pin. (Gerald D. carr)

14. A 10-kg quantity of a radioactive isotope decays to 3 kg after
17 years. Find the decay constant of the isotope.

15. The population of a city is P(r) = 2 - 06 (in millions), where ¢
1s measured in years. Calculate the time it takes for the population to
double, to triple, and to increase 7 fold.

16. What is the differential equation satisfied by P (), the number of

infected computer hosts in Example 4? Over which time interva] would
P (1) increase 100 fold?

17. The decay constant for a certain drug is k = 0.35 day—1, Calculate

the time it takes for the quantity present in the bloodstream to decrease
by half, by one-third, and by one-tenth.

18. Light Intensity The intensity of light passing through an absorh-
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