$[a_m, b_m]$ can be regarded as the m-th stage of the approximation. For the specific problem of Theorem 3.1, the above special property which characterizes an arbitrary small neighborhood of the target-place naturally provides the much needed guiding criterion for the inductive selection of subintervals, $\{[a_m, b_m], m \in \mathbb{N}\}.$

Exercises

To verify the existence of limit for the following sequences:

1.
$$a_1 = \sqrt{2}, a_2 = \sqrt{2 + \sqrt{2}}, a_3 = \sqrt{2 + \sqrt{2 + \sqrt{2}}}, \dots$$
 and inductively $a_{n+1} = \sqrt{2 + a_n}$.

2.
$$a_1 = \sqrt{2}, a_2 = \sqrt{2 \cdot \sqrt{2}}, a_3 = \sqrt{2 \cdot \sqrt{2 \cdot \sqrt{2}}}, \dots$$
 and inductively $a_{n+1} = \sqrt{2 \cdot a_n}$.
3. $\left\{ a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}, \ n = 1, 2, 3, \dots \right\}$.

3.
$$\left\{ a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}, \ n = 1, 2, 3, \dots \right\}$$

4.
$$\{a_n = (1 + \frac{1}{n})^n, n = 1, 2, 3, \dots\}$$

5.
$$\left\{b_n = \left(1 + \frac{1}{n}\right)^{n+1}, \ n = 1, 2, 3, \dots\right\}$$
. [Hint: Compute $\frac{a_{n+1}}{a_n}$ and $\frac{b_n}{b_{n+1}}$ for Exercises 4 and 5 and make use of the inequality $\left(1 - \frac{1}{(n+1)^2}\right)^{n+1} > 1 - \frac{1}{n+1}$ to show that a_n (resp. b_n) are monotonically increasing (resp. decreasing).]

6. Suppose that $a_1 < b_1$ are two given positive real numbers. Set

$$a_2 = \sqrt{a_1 b_1}, \ b_2 = \frac{1}{2}(a_1 + b_1)$$

 $a_3 = \sqrt{a_2 b_2}, \ b_3 = \frac{1}{2}(a_2 + b_2)$

and inductively

$$a_{n+1} = \sqrt{a_n b_n}, \ b_{n+1} = \frac{1}{2}(a_n + b_n).$$

Prove that a_n (resp. b_n) are monotonically increasing (resp. decreasing), $a_n < b_n$ and $(b_n - a_n) \to 0$.

7. Let
$$0 < r < 1$$
. Show that $\lim_{n \to \infty} r^n = 0$.

8. Set $a_n = 1 + r + \cdots + r^{n-1}$. Show that

$$\lim_{n \to \infty} a_n = \frac{1}{1 - r}$$

provided |r| < 1.

9. Show that every rational number can always be expressed as a cyclic decimal.

10. Show that the limit value of a cyclic decimal is always equal to a rational number.

[Thus irrational numbers are exactly those infinite decimals which are non-cyclic!]

§ 2. Limit and the Continuity of a Function

Geometrically speaking, a function y = f(x) is continuous if its graph is a continuous curve. Intuitively, it roughly means that the change in the functional values will be small provided the change in the independent variable x is sufficiently small.

A mathematical definition of the localized concept of the continuity of f(x) at x = a was already given in Sec. 2 of Chapter 2. It is convenient to translate that definition in terms of sequential limit, namely,

Definition. A function f(x) is said to be continuous at $x = x_0$ if to any given sequence $\{s_n\}$, $s_n \to x_0$, the corresponding sequence $\{f(s_n)\}$ converges to $f(x_0)$ as its limit, i.e., $f(s_n) \to f(x_0)$.

A function f(x), $a \le x \le b$, is said to be continuous over [a, b] if

it is continuous at every point $x_0 \in [a, b]$.

Continuous functions over a closed interval forms an important family of functions in the study of calculus. They enjoy some nice properties which, in fact, plays a basic role in the framework of