18 CHALL

In Exercises 1-4, find the slope, the y-intercept, and the x-intercept of the line with the given equation.

1.
$$y = 3x + 12$$

2.
$$y = 4 - x$$

3.
$$4x + 9y = 3$$

4.
$$y-3=\frac{1}{2}(x-6)$$

In Exercises 5-8, find the slope of the line.

5.
$$y = 3x + 2$$

6.
$$y = 3(x - 9) + 2$$

7.
$$3x + 4y = 12$$

8.
$$3x + 4y = -8$$

In Exercises 9-20, find the equation of the line with the given description.

- 9. Slope 3, y-intercept 8
- 10. Slope -2, y-intercept 3
- 11. Slope 3, passes through (7, 9)
- 12. Slope -5, passes through (0, 0)
- 13. Horizontal, passes through (0, -2)
- **14.** Passes through (-1, 4) and (2, 7)
- **15.** Parallel to y = 3x 4, passes through (1, 1)
- **16.** Passes through (1, 4) and (12, -3)
- 17. Perpendicular to 3x + 5y = 9, passes through (2, 3)
- 18. Vertical, passes through (-4, 9)
- 19. Horizontal, passes through (8, 4)
- 20. Slope 3, x-intercept 6
- 21. Find the equation of the perpendicular bisector of the segment joining (1, 2) and (5, 4) (Figure 12). Hint: The midpoint Q of the segment joining (a, b) and (c, d) is $\left(\frac{a+c}{2}, \frac{b+d}{2}\right)$

FIGURE 12

22. Intercept-Intercept Form Show that if $a, b \neq 0$, then the line with x-intercept x = a and y-intercept y = b has equation (Figure 13)

$$\frac{x}{a} + \frac{y}{b} = 1$$

y = 3. 24. Find y such that (3, y) lies on the line of slope m = 2

(1, 4). 25. Determine whether there exists a constant c such that t_{l_0}

(b) passes through (3,1)

x + cy = 1: (d) is vertical. (a) has slope 4.

26. Assume that the number N of concert tickets that can be some some conticket is a linear function N(P) for the

26. Assume that the fluid is a linear function N(P) for $10 \le P$ price of P dollars per ticket is a linear function N(P) for $10 \le P$. price of P dollars per decket Determine N(P) (called the demand function) if $N(10) = \emptyset$ Determine N(P) (cancel ΔN in the number of tickets) N(40) = 0. What is the decrease ΔN in the number of tickets. the price is increased by $\Delta P = 5$ dollars?

27. Suppose that the number of a certain type of computer to 27. Suppose that the field P (in dollars) is given by a linear function be sold when its price is P (in dollars) is given by a linear function P (in dollars) is given by P (in dollar

be sold when its product N(P) if N(1000) = 10,000 and N(1500) = 10,000What is the change ΔN in the number of computers sold if the matter ΔN in the number of computers ΔN in t

increased by $\Delta P = 100$ dollars?

28. Suppose that the demand for Colin's kidney pies is linear price P. Determine the demand function N as a function of P_0 the number of pies sold when the price is P if he can sell $100 \, \text{pies}$ the price is \$5.00 and he can sell 40 pies when the price is \$1000 termine the revenue $(N \times P)$ for prices P = 5, 6, 7, 8, 9, 10 and choose a price to maximize the revenue.

29. Materials expand when heated. Consider a mostal rod of length at temperature T_0 . If the temperature is changed an amount AT the rod's length approximately changes by ΔL $L_0\Delta T$, where the thermal expansion coefficient and ΔT is not xtreme temper change. For steel, $\alpha = 1.24 \times 10^{-5} \, ^{\circ}\text{C}^{-1}$.

°C. Find its ₺ (a) A steel rod has length $L_0 = 40$ cm at $T_0 =$ at $T = 90^{\circ}$ C.

(b) Find its length at $T = 50^{\circ}$ C if its length at $T_0 = 100^{\circ}$ C is

(c) Express length L as a function of T if $L_0 = 65$ cm at $T_0 = 10$

30. Do the points (0.5, 1), (1, 1.2), (2, 2) lie on a line?

31. Find b such that (2, -1), (3, 2), and (b, 5) lie on a line.

32. Find an expression for the velocity v as a linear function vmatches the following data:

t (s)	0	2	4	6
v (m/s)	39.2	58.6	78	97.4

33. The period T of a pendulum is measured for pendulums of different lengths. different lengths L. Based on the following data, does T appears functions a linear function. a linear function of L?

L (cm)	20	30	40	50
T(s)	0.9	1.1	1.27	1.42

34. Show that f is linear of slope m if and only if

f(
$$r + 1$$
)

f(x+h) - f(x) = mh (for all x and h)

That is to say, prove the following two statements: (a) f is linear of slope m implies that $f(x+h) - f^{(1)}$

(D) / (X + of slope m.

35. Find th

(a) f(x):

In Exercise imum valu

36. y = x

38. y = -

40. y = 2

42. y = 3

44. Sketc minimum

45. Sketc point, the

46. If the lation wit and 1), the alleles) is heterozyg

47. For v root? No

48. the follow (a) There

50. the arithm in Exercis

Further

55. Show of fg?

56. Show and f(1)

57. Show $[x_1, x_2]i$ exact dep

58. Com mula for

- (b) f(x+h) f(x) = mh (for all x and h) implies that f is linear of slope m.
- 35. Find the roots of the quadratic polynomials:

35. Find the roots
$$f(x) = 4x^2 - 3x - 1$$

(b)
$$f(x) = x^2 - 2x - 1$$

In Exercises 36–43, complete the square and find the minimum or maximum value of the quadratic function.

$$36. \ y = x^2 + 2x + 5$$

37.
$$y = x^2 - 6x + 9$$

38.
$$y = -9x^2 + x$$

39.
$$y = x^2 + 6x + 2$$

40.
$$y = 2x^2 - 4x - 7$$

41.
$$y = -4x^2 + 3x + 8$$

42.
$$y = 3x^2 + 12x - 5$$

43.
$$y = 4x - 12x^2$$

- 44. Sketch the graph of $y = x^2 6x + 8$ by plotting the roots and the minimum point.
- 45. Sketch the graph of $y = x^2 + 4x + 6$ by plotting the minimum point, the y-intercept, and one other point.
- 46. If the alleles A and B of the cystic fibrosis gene occur in a population with frequencies p and 1 p (where p is a fraction between 0 and 1), then the frequency of heterozygous carriers (carriers with both alleles) is 2p(1-p). Which value of p gives the largest frequency of heterozygous carriers?
- 47. For which values of c does $f(x) = x^2 + cx + 1$ have a double root? No real roots?
- 48. Let f be a quadratic function and c a constant. Which of the following statements is correct? Explain graphically.
- (a) There is a unique value of c such that y = f(x) c has a double root.
- (b) There is a unique value of c such that y = f(x c) has a double root
- **49.** Prove that $x + \frac{1}{x} \ge 2$ for all x > 0. *Hint:* Consider $(x^{1/2} x^{-1/2})^2$.
- **50.** Let a, b > 0. Show that the *geometric mean* \sqrt{ab} is not larger than the *arithmetic mean* (a + b)/2. *Hint:* Use a variation of the hint given in Exercise 49.

51. If objects of weights x and w_1 are suspended from th Figure 14(A), the cross-beam is horizontal if $bx = aw_1$. I a and b are known, we may use this equation to determine weight x by selecting w_1 such that the cross-beam is horizontal in the proceed as follows. x by w_1 on the left as in (A). Then switch places and bala on the right as in (B). The average $\bar{x} = \frac{1}{2}(w_1 + w_2)$ give for x. Show that \bar{x} is greater than or equal to the true weight

- **52.** Find numbers x and y with sum 10 and product 24 quadratic polynomial satisfied by x.
- 53. Find a pair of numbers whose sum and product are bo
- **54.** Show that the parabola $y = x^2$ consists of all point $d_1 = d_2$, where d_1 is the distance from P to $\begin{pmatrix} 0 & \frac{1}{4} \end{pmatrix}$ and tance from P to the line $y = -\frac{1}{4}$ (Figure 1)

Further Insights and Challenges

- 55. Show that if f and g are linear, then so is f + g. Is the same true of fg?
- **56.** Show that if f and g are linear functions such that f(0) = g(0) and f(1) = g(1), then f = g.
- 57. Show that $\Delta y/\Delta x$ for the function $f(x) = x^2$ over the interval $[x_1, x_2]$ is not a constant, but depends on the interval. Determine the exact dependence of $\Delta y/\Delta x$ on x_1 and x_2 .
- 58. Complete the square and use the result to derive the quadratic formula for the roots of $ax^2 + bx + c = 0$.

59. Let $a, c \neq 0$. Show that the roots of

$$ax^2 + bx + c = 0 \qquad \text{and} \qquad cx^2 + bx + a$$

are reciprocals of each other.

60. Show, by completing the square, that the parabola

$$y = ax^2 + bx + c$$

is congruent to $y = ax^2$ by a vertical and horizontal tra

61. Prove Viète's Formulas: The quadratic polynomia as roots is $x^2 + bx + c$, where $b = -\alpha - \beta$ and $c = \alpha \beta$

tional lune

oef.

)).

lials

0 8

ents, ions.

unc-

stinct

polyno

In Exercises 27–34, calculate the composite functions $f \circ g$ and $g \circ f$, and determine their domains.

27.
$$f(x) = \sqrt{x}$$
, $g(x) = x + 1$

28.
$$f(x) = \frac{1}{x}$$
, $g(x) = x^{-4}$

29.
$$f(x) = 2^x$$
, $g(x) = x^2$

30.
$$f(x) = |x|, \quad g(\theta) = \sin \theta$$

31.
$$f(\theta) = \cos \theta$$
, $g(x) = x^3 + x^2$

32.
$$f(x) = \frac{1}{x^2 + 1}$$
, $g(x) = x^{-2}$

33.
$$f(t) = \frac{1}{\sqrt{t}}$$
, $g(t) = -t^2$

37.

$$f(x) = \begin{cases} x^2 & \text{whe} \\ -x^2 & \text{whe} \end{cases}$$

38.

$$f(x) = \begin{cases} 2x - 2 & \text{wf} \\ x & \text{wf} \end{cases}$$

39. The population (in millions) of a co (years) is $P(t) = 30 \cdot 2^{0.1t}$. Show that the years. Show more generally that for any I function $g(t) = a2^{kt}$ doubles after 1/k y

40. Find all values of c such that f(x) =

Further Insights and Challenges

In Exercises 41–47, we define the first difference δf of a function f by $\delta f(x) = f(x+1) - f(x)$.

41. Show that if $f(x) = x^2$, then $\delta f(x) = 2x + 1$. Calculate δf for f(x) = x and $f(x) = x^3$.

42. Show that $\delta(10^x) = 9 \cdot 10^x$ and, more generally, that $\delta(b^x) = (b-1)b^x$.

43. Show that for any two functions f and g, $\delta(f+g) = \delta f + \delta g$ and $\delta(cf) = c\delta(f)$, where c is any constant.

44. Suppose we can find a function P such that $\delta P(x) = (x+1)^k$ and P(0) = 0. Prove that $P(1) = 1^k$, $P(2) = 1^k + 2^k$, and, more generally, for every whole number n,

$$P(n) = 1^k + 2^k + \dots + n^k$$

45. First show that

$$P(x) = \frac{x(x+1)}{2}$$

satisfies $\delta P = (x+1)$. Then apply the

46. Calculate $\delta(x^3)$, $\delta(x^2)$, and of degree 3 such that $\delta P = (x + 1)^{n-2}$ and $P(n) = 1^2 + 2^2 + \dots + n^2$.

47. This exercise combined with Exerci numbers k, there exists a polynomial P tion requires the Binomial Theorem and pendix C).

(a) Show that $\delta(x^{k+1}) = (k+1)x^k +$ terms involving smaller powers of x.

(b) Show by induction that there exists with leading coefficient 1/(k+1):

$$P(x) = \frac{1}{k+1}x^{k+1}$$

such that $\delta P = (x+1)^k$ and P(0) = 0.

1.4 Trigonometric Functions

We begin our trigonometric review by recalling the two syste **radians** and **degrees**. They are best described using the relative rotation. As is customary, we often use the lowercase Greek angles and rotations.