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■ PROJECT The Tragedy of the Commons: An Introduction to Game Theory

In Example 4.4.5 we explored sustainable fish harvesting. We assumed that a single 
company is exploiting the resource and found that the steady-state population size in the 
presence of harvesting satisfied the equation

rNS1 2
N
KD − hN

where N is the population size, r and K are positive constants, and h is the fishing effort. 
In reality, fish stocks are part of the “Commons,” meaning that no single person has 
exclusive rights to them. Suppose, for example, that a second company begins to exploit 
the same population. Then there are two fishing efforts, h1 and h2, one for each company. 
Once the population size has stabilized, the equation

rNS1 2
N
KD − h1N 1 h2N

must hold, where h1N and h2N are the total harvests for companies 1 and 2, respectively. 
Suppose you run company 1 and before company 2 arrives you are using the optimal h 
calculated in Example 4.4.5, that is, h1 − 1

2r.

 1.  When company 2 arrives, it needs to decide upon a fishing effort h2. What value 
of h2 maximizes its harvest once the population has reached a steady state, 
assuming that you continue using h1?

 2.  Once your competitor is using their rate obtained in Problem 1, your harvesting 
rate will no longer be optimal for you. What is your new optimal rate h*

1, given 
that your competitor continues to use the rate found in Problem 1?

 3.  More generally, determine your optimal fishing effort as a function of the rate 
your competitor uses and your competitor’s optimal fishing effort as a function of 
the rate you use. These are referred to as the “best response” fishing efforts.

 4.  The harvesting problem can be viewed as a game played between the two 
companies, where the payoff to each depends on both of their choices of fishing 
effort. An area of mathematics called game theory has been developed to ana-
lyze such problems. A key concept in game theory is that of a Nash equilibrium, 
which is a pair of values h*

1 and h *
2 that simultaneously satisfy both best response 

functions. At a Nash equilibrium each party is doing the best that it can, given the 
choice of its competitor. What is the Nash equilibrium pair of fishing efforts?

 5.  What is the total population size at the Nash equilibrium, and what are the total 
harvests of you and your competitor?

 6.  Demonstrate that both you and your competitor could have a higher total harvest 
than that attained at the Nash equilibrium if you could agree to cooperate and to 
split the harvest that you were obtaining before your competitor showed up.

 7.  Problem 6 shows that both you and your competitor are worse off at the Nash 
equilibrium than you would be if you agreed to cooperate. Show that, in terms of 
population size, the fish population is also worse off. This is the “Tragedy of the 
Commons.”
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Nash
John F. Nash, Jr. (1928–) is an Ameri-
can mathematician best known for his 
work in game theory. He developed the 
idea now known as a Nash equilibrium 
in his 28-page doctoral thesis in 1950. 
In 1994 he was awarded the Nobel 
Prize in Economics for this work. Nash 
also made several other foundational 
contributions to advanced mathematics, 
despite suffering from schizophrenia. 
His extraordinary life is chronicled in the 
book A Beautiful Mind by Sylvia Nasar 
and in a Hollywood movie of the same 
name. 
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4.5 Recursions: Equilibria and Stability

In Section 1.6 we looked at recursive sequences, which we also called difference equa-
tions or discrete-time models. These are defined by a recursion of the form

an 11 − f san d  or  xt11 − f sxtd  or  Nt11 − f sNtd

where f  is the updating function, Nt is the number of individuals in a population at time 
t, and Nt11 is the population one unit of time into the future. Then in Section 2.1 we 
investigated the long-term behavior of such recursions. In particular, we saw that some 
recursive sequences approach a limiting value as t becomes large:

lim
t l`

 xt − L

Here we assume that the updating function f  that defines the recursion is a differen-
tiable function and learn that the values of its derivative play a role in determining the 
limiting behavior of the sequence.

■ Equilibria

(1) Definition An equilibrium of a recursive sequence xt11 − f sxtd is a num-
ber x̂ that is left unchanged by the function f , that is,

f sx̂d − x̂

It’s helpful to think of an equilibrium as a point on a number line. An equilibrium is 
sometimes called a fixed point because f  leaves the point x̂ fixed. Notice that if x̂ is an 
equilibrium and if, for instance, x6 − x̂, then

x7 − f sx6d − f sx̂d − x̂

and, similarly, all of the following terms in the sequence are also equal to x̂.
To find the equilibria algebraically, we solve the equation f sxd − x, if possible. To 

locate them geometrically we graph the curves y − f sxd and y − x (the diagonal line) 
and see where they intersect. Because the recursion is xt11 − f sxtd, when we graph f  
we label the horizontal and vertical axes xt and xt11 , as in Figure 1. For that particular 
recursion we see that there are three points of intersection and therefore three equilibria, 
0, a, and b.

(2) Definition An equilibrium is called stable if solutions that begin close to 
the equilibrium approach that equilibrium. It is called unstable if solutions that 
start close to the equilibrium move away from it.

So when we say that x̂ is a stable equilibrium of the recursion xt11 − f sxtd we mean 
that if xt is a solution of the recursion and x0 is sufficiently close to x̂, then xt l x̂  
as t l `.

0

xt+1

xt

xt+1=xt

a b

f
b

a

FIGURE 1
The recursion xt11 − f sxtd has three 
equilibria
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 EXAMPLE 1  | Determine the equilibrium of the difference equation Nt11 − RNt, 
where R . 0, and classify it as stable or unstable.

SOLUTION The equilibrium N̂ satisfies the equation N̂ − RN̂. The only solution of 
sR 2 1dN̂ − 0 is N̂ − 0, unless R − 1. We know that the solution of the recursion 
Nt11 − RNt is Nt − N0 ? Rt. There are three cases:

■  If 0 , R , 1, then Nt − N0 ? Rt l 0 as t l `, so Nt l N̂ − 0. Therefore the 
equilibrium N̂ − 0 is stable in this case.

■   If R . 1, then Nt − N0 ? Rt l ` as t l `, and so the equilibrium N̂ − 0 is 
unstable in this case.

■   If R − 1, then Nt − N0 for all t. This case is called neutral. ■

■ Cobwebbing
There is a graphical method for finding equilibria and determining whether they are 
stable or unstable. It is called cobwebbing and is illustrated in Figure 2. We start with an 
initial value x0 on the horizontal axis and locate x1 − f sx0d as the distance from the point 
x0 up to the point sx0, x1d on the graph of f. Then we draw the horizontal line segment 
from sx0, x1d to the point sx1, x1d on the diagonal line. The point x1 lies directly beneath 
sx1, x1d on the horizontal axis.

0

xt+1

xtx¸ x¡

(x¸, x¡)

f xt+1=xt

(x¡, x¡)x¡

(a)

0

xt+1

xtx¸

f xt+1=xt

(b)

In Figure 2(b) we repeat this procedure to obtain x2 from x1, drawing a vertical line 
segment from sx1, x1d to sx1, x2d on the graph of f  and then a horizontal line segment 
over to the diagonal. Continuing in this manner we create a zigzag path that reflects off 
the diagonal line and shows how the successive terms in the sequence can be obtained 
geometrically.

 EXAMPLE 2  | Use cobwebbing to determine whether the equilibria x̂ − 0, x̂ − a, 
and x̂ − b in Figure 1 are stable or unstable.

FIGURE 2
Cobwebbing
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SOLUTION Figure 3 is a larger version of Figure 1. We experiment with different 
initial values and use cobwebbing to visualize the values of xt. We notice that

 if  a , x0 , b,  then  lim
t l`

 xt − b

 but if  0 , x0 , a,  then  lim
t l`

 xt − 0

0

xt+1

xt+1=xt

a b

f

xtx¸ x¸

b

a

Solutions that start close to b approach b, so x̂ − b is a stable equilibrium. Likewise, 
solutions that start close to 0 approach 0, so x̂ − 0 is also a stable equilibrium. But solu-
tions that start close to a (on either side of a) move away from a. So x̂ − a is an unstable 
equilibrium. ■

So far we have used cobwebbing only with increasing functions f. Figure 4 shows 
what happens when f  decreases. We apply cobwebbing with initial value x0 to a dif-
ference equation xt11 − f sxtd with decreasing f. Instead of the zigzag paths in Figures 
2 and 3, you can see that we get spiral paths and the values of xt oscillate around the 
equilibrium x̂. In Figure 4(a), xt l x̂ as t l `, so x̂ is stable. In Figure 4(b), however, the 
values of xt move away from x̂, so x̂ is unstable.

xt+1

0

f

xt+1=xt

xt

(a) Stable spiral (b) Unstable spiral

xt+1

0
f

xt+1=xt

xtx̂x̂x¸ x¸

FIGURE 3
Cobwebbing with stable and  

unstable equilibria

FIGURE 4 Spiral cobwebbing
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■ Stability Criterion
An equilibrium occurs when the graph of f  crosses the diagonal line, which has slope 1. 
Figure 5 shows the increasing function f  from Figure 3 and we see that at the stable 
equilibrium x̂ − b the curve crosses the diagonal from above to below, so f 9sbd , 1. At 
the unstable equilibrium x̂ − a the curve crosses the diagonal from below to above, so 
f 9sad . 1.

If f  is decreasing, we see from diagrams like Figure 4 that stable spirals occur when 
21 , f 9sx̂d , 0 and unstable spirals occur for steeper curves, that is, f 9sx̂d , 21.

To summarize, our intuition tells us that equilibria are stable when 21 , f 9sx̂d , 1 
and unstable when f 9sx̂d . 1 or f 9sx̂d , 21. So the following theorem appears plau-
sible. A proof, using the Mean Value Theorem, appears in Appendix E.

(3) The Stability Criterion for Recursive Sequences Suppose that x̂ is 
an equilibrium of the recursive sequence xt11 − f sxtd, where f 9 is continuous. If 
| f 9sx̂d | , 1, the equilibrium is stable. If | f 9sx̂d | . 1, the equilibrium is unstable.

Let’s revisit some of the difference equations we studied in Section 2.1 and see how 
the Stability Criterion applies to those equations.

 EXAMPLE 3  | BB  Drug concentration In Example 2.1.5 we considered the 
difference equation

Cn11 − 0.3Cn 1 0.2

where Cn is the concentration of a drug in the bloodstream of a patient after injection on 
the nth day, 30% of the drug remains in the bloodstream the next day, and the daily dose 
raises the concentration by 0.2 mgymL.

Here the recursion is of the form Cn11 − f sCnd, where f sxd − 0.3x 1 0.2. The equi-
librium concentration is Ĉ, where 0.3Ĉ 1 0.2 − Ĉ. Solving this equation gives Ĉ − 2

7. 
The derivative of f  is f 9sĈd − 0.3, which is less than 1, so the equilibrium is stable, as 
illustrated by the cobwebbing in Figure 6. In fact, in Section 2.1 we calculated that

 lim
nl`

 Cn −
2
7

 ■

 EXAMPLE 4  | BB  Logistic difference equation In Example 2.1.8 we 
examined the long-term behavior of the terms defined by the logistic difference 
equation

xt11 − cxts1 2 xtd

for different positive values of c. Use the Stability Criterion to explain that behavior.

SOLUTION We can write the logistic equation as xt11 − f sxtd, where

f sxd − cxs1 2 xd

We first find the equilibria by solving the equation f sxd − x:

cxs1 2 xd − x &? x − 0 or cs1 2 xd − 1

So one equilibrium is x̂ − 0. To find the other one, note that

c 2 cx − 1 &? c 2 1 − cx &? x −
c 2 1

c
− 1 2

1
c

0

xt+1

xt

xt+1=xt

a b

slope<1

slope>1

f

b

a

FIGURE 5

0

Cn+1

Cn

Cn+1=Cn

2/7

FIGURE 6
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So the other equilibrium is

x̂ − 1 2
1
c

The derivative of f sxd − csx 2 x 2d is f 9sxd − cs1 2 2xd. For the first equilibrium, 
x̂ − 0, we have f 9s0d − c, so the Stability Criterion tells us that x̂ − 0 is stable if 
0 , c , 1 and unstable if c . 1.

For the second equilibrium, x̂ − 1 2 1yc, we have

f 9S1 2
1
cD − cF1 2 2S1 2

1
cDG − cS 2

c
2 1D − 2 2 c

The Stability Criterion says that this equilibrium is stable if | 2 2 c | , 1. But

| 2 2 c | , 1 &? 21 , 2 2 c , 1 &? 1 , c , 3

We also note that f 9sx̂d is negative when 2 2 c , 0, that is, c . 2, so oscillation 
occurs when c . 2. Let’s compile all this information in the following chart:

x̂ − 0 x̂ − 1 2
1
c

0 , c , 1 stable
1 , c , 2 unstable stable
2 , c , 3 unstable stable (oscillation)
c . 3 unstable unstable (oscillation)

Referring to the chart, we find an explanation for what we noticed in Example 2.1.8. 
When c , 3, one of the equilibria is stable and so the terms converge to that number. 
But when c . 3 both equilibria are unstable and so the terms have nowhere to go; they 
don’t approach any fixed number. ■

 EXAMPLE 5  | BB  Ricker equation W. E. Ricker introduced the discrete- 
time model

xt11 − cxte2xt  c . 0

in the context of modeling fishery populations. Find the equilibria and determine the 
values of c for which they are stable.

SOLUTION The Ricker equation is xt11 − f sxtd, where

f sxd − cxe2x

To find the equilibria we solve the equation f sxd − x:

cxe2x − x &? x − 0 or ce2x − 1

One equilibrium is x̂ − 0. The other satisfies

ce2x − 1 &? c − ex &? x − ln c

The second equilibrium is x̂ − ln c.

In Exercises 17–20 you are asked to 
illustrate the four cases in the chart in 
Example 4 both by cobwebbing and by 
graphing the recursive sequence.
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We use the Product Rule to differentiate f :

f 9sxd − cxs2e2xd 1 ce2x − cs1 2 xde2x

For x̂ − 0 we have f 9s0d − c, so it is stable if 0 , c , 1 and unstable if c . 1. For 
x̂ − ln c we get

f 9sln cd − cs1 2 ln cde2ln c − cs1 2 ln cd ?
1
c

− 1 2 ln c

Therefore

| f 9sx̂d | , 1 &? | 1 2 ln c | , 1 &? 21 , 1 2 ln c , 1

Now

1 2 ln c , 1 &? ln c . 0 &? c . 1

and

21 , 1 2 ln c &? ln c , 2 &? c , e 2

By the Stability Criterion, x̂ − ln c is stable when

1 , c , e 2

When 0 , c , 1 or c . e 2, x̂ − ln c is unstable.
We also note that oscillation occurs when f 9sx̂d , 0, so

1 2 ln c , 0 ? ln c . 1 ? c . e

Figure 7 illustrates cobwebbing for the Ricker equation for three values of c.

0

xt+1

xt0

xt+1

xt+1=xt

xt

f

c=2.5 stable

0

xt+1

xt

c=6 stable spiral c=9 unstable spiral

ln cln c ln c

■FIGURE 7
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EXERCISES 4.5
 7. xt11 −

xt

0.2 1 xt
 8. xt11 −

3xt

1 1 xt

 9. xt11 − 10xt e22xt 10. xt11 − xt
3 2 3xt

2 1 3xt

  11–12 Find the equilibria of the difference equation and 
classify them as stable or unstable. Use cobwebbing to find 
lim tl` xt for the given initial values.

 11. xt11 −
4xt

2

xt
2 1 3

, x0 − 0.5, x0 − 2

 12. xt11 −
7xt

2

xt
2 1 10

, x0 − 1, x0 − 3

  13–14 Find the equilibria of the difference equation. Deter-
mine the values of c for which each equilibrium is stable.

 13. xt11 −
cxt

1 1 xt
 14. xt11 −

xt

c 1 xt

 15.  Drug pharmacokinetics A patient takes 200 mg of a 
drug at the same time every day. Just before each tablet is 
taken, 10% of the drug remains in the body.

  (a)  If Qn  is the quantity of the drug in the body just after 
the n th tablet is taken, write a difference equation 
expressing Qn 11 in terms of Qn .

  (b)  Find the equilibria of the equation in part (a).
  (c) Draw a cobwebbing diagram for the equation.

 16.  Drug pharmacokinetics A patient is injected with a 
drug every 8 hours. Immediately before each injection the 
concentration of the drug has been reduced by 40% and the 
new dose increases the concentration by 1.2 mgymL.

  (a)  If Qn  is the concentration of the drug in the body just 
after the n th injection is given, write a difference equa-
tion expressing Qn 11 in terms of Qn .

  (b)  Find the equilibria of the equation in part (a).
  (c) Draw a cobwebbing diagram for the equation.

  17–20 Logistic difference equation Illustrate the results of 
Example 4 for the logistic difference equation by cobwebbing 
and by graphing the first ten terms of the sequence for the given 
values of c and x0.

 17. c − 0.8, x0 − 0.6

 18. c − 1.8, x0 − 0.1

 19. c − 2.7, x0 − 0.1

 20. c − 3.6, x0 − 0.4

  1–4 The graph of the function f  for a recursive sequence 
xt11 − f sxtd is shown. Estimate the equilibria and classify them 
as stable or unstable. Confirm your answer by cobwebbing.

 1. 

0

0.5

0.5

xt+1

f

xt

 2. 

0

0.5

0.5

xt+1

f

xt

 3. 

0

1

1 2

xt+1

f

xt

 4. 

0

1

2

1 2

xt+1

f

xt

  5–10 Find the equilibria of the difference equation and classify 
them as stable or unstable.

 5. xt11 − 1
2 xt

2 6. xt11 − 1 2 xt
2
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   a gene for drug resistance in malaria:

pt11 −
pt

2WRR 1 pts1 2 ptdWRS

pt
2WRR 1 2pts1 2 ptdWRS 1 s1 2 ptd2WSS

   where WRR, WRS, and WSS are constants representing the 
probability of survival of the three genotypes. In fact this 
model applies to the evolutionary dynamics of any gene in a 
population of diploid individuals.

  (a)  Find the equilibria of the model in terms of the  
constants.

  (b)  Suppose that WRR − 3
4, WRS − 1

2, and WSS − 1
4. Deter-

mine the stability of each equilibrium (provided it lies 
between 0 and 1). Plot the cobwebbing diagram and 
interpret your results.

  (c)  Suppose that WRR − 1
2, WRS − 3

4, and WSS − 1
4. Determine 

the stability of each equilibrium. Plot the cobwebbing 
diagram and interpret your results.

 25.  Blood cell production A simple model of blood cell pro-
duction is given by

Rt11 − Rts1 2 dd 1 FsRtd
   where d is the fraction of red blood cells that die from one 

day to the next and Fsxd is a function specifying the number 
of new cells produced in a day, given that the current number 
is x. Find the equilibria and determine the stability in each 
case.

  (a)  Fsxd − !sK 2 xd, where ! and K are positive constants

  (b)  Fsxd −
ax

b 1 x 2 , where a and b are positive constants

   and a . bd

Source: Adapted from N. Mideo et al., “Understanding and Predicting 
Strain-Specific Patterns of Pathogenesis in the Rodent Malaria Plasmodium 
chabaudi,” The American Naturalist 172 (2008): E214–E328.

4.6 Antiderivatives

Suppose you know the rate at which a bacteria population is increasing and want to know 
the size of the population at some future time. Or suppose you know the rate of decrease 
of your blood alcohol concentration and want to know your BAC an hour from now. In 
each case, the problem is to find a function F whose derivative is a known function f. If 
such a function F exists, it is called an antiderivative of f.

Definition A function F is called an antiderivative of f  on an interval I if 
F9sxd − f sxd for all x in I.

For instance, let f sxd − x 2. It isn’t difficult to discover an antiderivative of f  if we keep 
the Power Rule in mind. In fact, if Fsxd − 1

3 x 3, then F9sxd − x 2 − f sxd. But the function 
Gsxd − 1

3 x 3 1 100 also satisfies G9sxd − x 2. Therefore both F and G are antiderivatives  
of f . Indeed, any function of the form Hsxd − 1

3 x 3 1 C, where C is a constant, is an anti-
derivative of f . The following theorem says that f  has no other antiderivative. A proof of 
Theorem 1, using the Mean Value Theorem, is outlined in Exercise 46.

 21.  Sustainable harvesting In Example 4.4.5 we looked at a 
model of sustainable harvesting, which can be formulated as 
a discrete-time model:

Nt11 − Nt 1 rNtS1 2
Nt

K D 2 hNt

  Find the equilibria and determine when each is stable.

 22.  Heart excitation A simple model for the time xt it takes 
for an electrical impulse in the heart to travel through the 
atrioventricular node of the heart is

xt11 −
375

xt 2 90
1 100  xt . 90

  (a)  Find the relevant equilibrium and determine when it  
is stable.

  (b) Draw a cobwebbing diagram.
Source: Adapted from D. Kaplan et al., Understanding Nonlinear Dynamics 
(New York: Springer-Verlag, 1995).

 23.  Species discovery curves  A common assumption is that 
the rate of discovery of new species is proportional to the 
fraction of currently undiscovered species. If dt is the frac-
tion of species discovered by time t, a recursion equation 
describing this process is

dt11 − dt 1 as1 2 dtd

   where a is a constant representing the discovery rate and 
satisfies 0 , a , 1. Find the equilibria and determine the 
stability.

 24.  Drug resistance in malaria In the project on page 78 we 
developed the following recursion equation for the spread of 
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(1) Theorem If F is an antiderivative of f  on an interval I, then the most gen-
eral antiderivative of f  on I is

Fsxd 1 C

where C is an arbitrary constant.

Going back to the function f sxd − x 2, we see that the general antiderivative of f  is 
1
3 x 3 1 C. By assigning specific values to the constant C, we obtain a family of functions 
whose graphs are vertical translates of one another (see Figure 1). This makes sense 
because each curve must have the same slope at any given value of x.

 EXAMPLE 1  | Find the most general antiderivative of each of the following  
functions.
(a) f sxd − sin x      (b) f sxd − 1yx      (c) f sxd − xn,  n ± 21

SOLUTION 
(a) If Fsxd − 2cos x, then F9sxd − sin x, so an antiderivative of sin x is 2cos x. By 
Theorem 1, the most general antiderivative is Gsxd − 2cos x 1 C.

(b) Recall from Section 3.7 that

d
dx

 sln xd −
1
x

So on the interval s0, `d the general antiderivative of 1yx is ln x 1 C. We also learned 
that

d
dx

 sln | x |d −
1
x

for all x ± 0. Theorem 1 then tells us that the general antiderivative of f sxd − 1yx is 
ln | x | 1 C on any interval that doesn’t contain 0. In particular, this is true on each of 
the intervals s2`, 0d and s0, `d. So the general antiderivative of f  is

Fsxd − Hln x 1 C1

lns2xd 1 C2

if  x . 0
if  x , 0

(c) We use the Power Rule to discover an antiderivative of xn. In fact, if n ± 21, then

d
dx

 S xn11

n 1 1D −
sn 1 1dxn

n 1 1
− xn

Thus the general antiderivative of f sxd − xn is

Fsxd −
xn11

n 1 1
1 C

This is valid for n > 0 since then f sxd − xn is defined on an interval. If n is negative 
(but n ± 21), it is valid on any interval that doesn’t contain 0. ■

As in Example 1, every differentiation formula, when read from right to left, gives 
rise to an antidifferentiation formula. In Table 2 we list some particular antiderivatives. 
Each for mula in the table is true because the derivative of the function in the right col-
umn appears in the left column. In particular, the first formula says that the antideriva-

x

y

0
y= ˛

3

y=    -2˛
3

y=    -1˛
3

y=    +1˛
3

y=    +2˛
3

y=    +3˛
3

FIGURE 1
Members of the family of antideriva-
tives of f sxd − x 2
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308  CHAPTER 4 | Applications of Derivatives

tive of a constant times a function is the constant times the antiderivative of the function. 
The second formula says that the antiderivative of a sum is the sum of the antideriva-
tives. (We use the notation F9− f , G9 − t.)

(2) Table of Antidifferentiation Formulas

Function
Particular  

antiderivative Function
Particular  

antiderivative

cf sxd cFsxd cos x sin x

f sxd 1 tsxd Fsxd 1 Gsxd sin x 2cos x

x n sn ± 21d x n11

n 1 1
sec 2 x tan x

1yx ln | x | sec x tan x sec x

e x e x 1
1 1 x 2

tan21 x

e cx 1
c

e cx

 EXAMPLE 2  | Find all functions t such that

t9sxd − 4 sin x 1
2x 5 2 sx 

x

SOLUTION We first rewrite the given function as follows:

t9sxd − 4 sin x 1
2x 5

x
2

sx 

x
− 4 sin x 1 2x 4 2

1

sx 

Thus we want to find an antiderivative of

t9sxd − 4 sin x 1 2x 4 2 x21y2

Using the formulas in Table 2 together with Theorem 1, we obtain

 tsxd − 4s2cos xd 1 2 
x 5

5
2

x1y2

1
2

1 C

− 24 cos x 1 2
5 x 5 2 2sx 1 C ■

In applications of calculus it is very common to have a situation as in Example 2, where 
it is required to find a function, given knowledge about its derivatives. An equation that  
involves the derivatives of a function is called a differential equation. These will be  
studied in some detail in Chapter 7, but for the present we can solve some elementary 
differential equations. The general solution of a differential equation involves an arbi-
trary con stant (or constants) as in Example 2. However, there may be some extra condi-
tions given that will determine the constants and therefore uniquely specify the solution.

To obtain the most general anti-
derivative from the particular ones in 
Table 2, we have to add a constant (or 
constants), as in Example 1.
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A differential equation of the form

dy
dt

− f std

is called a pure-time differential equation because the right side of the equation does 
not depend on y; it depends only on t (time). The solution will be a family of antideriva-
tives of f. The initial value of the solution may be specified by an initial condition of 
the form y − y0 when t − t0. Then the problem of finding a solution of the differential 
equation that also satisfies the initial condition is called an initial-value problem:

dy
dt

− f std    y − y0 when t − t0

 EXAMPLE 3  | Find f  if f 9sxd − ex 1 20s1 1 x 2 d21 and f s0d − 22.

SOLUTION The general antiderivative of

f 9sxd − ex 1
20

1 1 x 2

is f sxd − ex 1 20 tan21x 1 C

To determine C we use the fact that f s0d − 22:

f s0d − e 0 1 20 tan21 0 1 C − 22

Thus we have C − 22 2 1 − 23, so the particular solution is

 f sxd − ex 1 20 tan21x 2 3 ■

 EXAMPLE 4  | HIV incidence and prevalence The rate I at which people 
were becoming infected with HIV (termed the incidence) in New York in the early 
1980s is plotted in Figure 3. We can see from the figure that the data are well approxi-
mated by the linear function I std − 16 1 242t, where t measures the number of years 
since 1982. Suppose there were 80 infections at year t − 0. What is the number of 
infections expected in 1990 (termed the prevalence)?

SOLUTION Let Pstd be the prevalence in year t, that is, the number of infections. We 
are given that

dP
dt

− I std − 16 1 242t    Ps0d − 80

This is an initial-value problem for a pure-time differential equation. The general 
solution is given by the antiderivative of dPydt:

Pstd − 16t 1 121t 2 1 C

Then Ps0d − C, but we are given that Ps0d − 80, so C − 80. The solution is

Pstd − 80 1 16t 1 121t 2

40

_2 3
f

fª

_25

FIGURE 2

Figure 2 shows the graphs of the func-
tion f 9 in Example 3 and its antideriva-
tive f. Notice that f 9sxd . 0, so f  is 
always increasing. Also notice that 
when f 9 has a maximum or minimum, 
f  appears to have an inflection point. 
So the graph serves as a check on our 
calculation.

19831982 1984 1985 1986

I

t

800

400

FIGURE 3
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The projected number of infections in 1990 is

Ps8d − 80 1 16 ? 8 1 121 ? 82 − 7952

The actual number was estimated to be 7200. ■

 EXAMPLE 5  | Find f  if f 0sxd − 12x 2 1 6x 2 4, f s0d − 4, and f s1d − 1.

SOLUTION The general antiderivative of f 0sxd − 12x 2 1 6x 2 4 is

f 9sxd − 12 
x 3

3
1 6 

x 2

2
2 4x 1 C − 4x 3 1 3x 2 2 4x 1 C

Using the antidifferentiation rules once more, we find that

f sxd − 4 
x 4

4
1 3 

x 3

3
2 4 

x 2

2
1 Cx 1 D − x 4 1 x 3 2 2x 2 1 Cx 1 D

To determine C and D we use the given conditions that f s0d − 4 and f s1d − 1. Since 
f s0d − 0 1 D − 4, we have D − 4. Since

f s1d − 1 1 1 2 2 1 C 1 4 − 1

we have C − 2 3. Therefore the required function is

 f sxd − x 4 1 x 3 2 2x 2 2 3x 1 4 ■

Antidifferentiation is particularly useful in analyzing the motion of an object moving 
in a straight line. Recall that if the object has position function s − f std, then the veloc-
ity function is vstd − s9std. This means that the position function is an antiderivative of 
the velocity function. Likewise, the acceleration function is astd − v9std, so the velocity 
function is an antiderivative of the acceleration. If the acceleration and the initial values 
ss0d and vs0d are known, then the position function can be found by antidifferentiating 
twice.

 EXAMPLE 6  | A particle moves in a straight line and has acceleration given by 
astd − 6t 1 4. Its initial velocity is vs0d − 2 6 cmys and its initial displacement is 
ss0d − 9 cm. Find its position function sstd.

SOLUTION Since v9std − astd − 6t 1 4, antidifferentiation gives

vstd − 6 
t 2

2
1 4t 1 C − 3t 2 1 4t 1 C

Note that vs0d − C. But we are given that vs0d − 2 6, so C − 2 6 and

vstd − 3t 2 1 4t 2 6

Since vstd − s9std, s is the antiderivative of v:

sstd − 3 
t 3

3
1 4 

t 2

2
2 6t 1 D − t 3 1 2t 2 2 6t 1 D

This gives ss0d − D. We are given that ss0d − 9, so D − 9 and the required position 
function is

 sstd − t 3 1 2t 2 2 6t 1 9 ■
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EXERCISES 4.6
  1–20 Find the most general antiderivative of the function.  

(Check your answer by differentiation.)

 1. f sxd − 1
2 1 3

4 x 2 2 4
5 x 3 2. f sxd − 8x 9 2 3x 6 1 12x 3

 3. f sxd − sx 1 1ds2x 2 1d 4. f sxd − x s2 2 xd2

 5. f sxd − 5x 1y4 2 7x 3y4 6. f sxd − 2x 1 3x 1.7

 7. f sxd − 6sx 2 s6 x  8. f sxd − s4 x 3 1 s3 x 4 

 9. f sxd − s2  10. f sxd − e 2

 11. cstd −
3
t 2 ,  t . 0 12. hsmd −

2

sm 

 13. ts!d − cos ! 2 5 sin ! 14. f sxd − 2sx 1 6 cos x

 15. vssd − 4s 1 3e s 16. usrd − e 2 2r

 17. f sud −
u 4 1 3su 

u 2  18. f sxd − 3e x 1 7 sec 2 x

 19. f std −
t 4 2 t 2 1 1

t 2  20. f sxd −
1 1 x 2 x 2

x

  21–28 Solve the initial-value problem.

 21. 
dy
dt

− t 2 1 1,  t > 0,  y − 6 when t − 0

 22. 
dy
dt

− 1 1
2
t

,  t . 0,  y − 5 when t − 1

 23. 
dP
dt

− 2e 3t,  t > 0,  Ps0d − 1

 24. 
dm
dt

− 100e2 0.4 t,  t > 0,  ms0d − 50

 25. 
dr
d!

− cos ! 1 sec ! tan !,  0 , ! , "y2,  rs"y3d − 4

 26. 
dy
dx

− x 2 1 1 1
1

x 2 1 1
,  y − 0 when x − 1

 27. 
du
dt

− st 1
2

st 
,  t . 0,  us1d − 5

 28. 
dv
dt

− e2 ts1 1 e 2 td,  t > 0,  vs0d − 3

  29–40 Find f .

 29. f 0sxd − 6x 1 12x 2 30. f 0sxd − 2 1 x 3 1 x 6

 31. f 0sxd − 2
3 x 2y3 32. f 0sxd − 6x 1 sin x

 33. f 9sxd − 1 2 6x, f s0d − 8

 34. f 9sxd − 8x 3 1 12x 1 3, f s1d − 6

 35. f 9sxd − sx s6 1 5xd, f s1d − 10

 36. f 9sxd − 2x 2 3yx 4, x . 0, f s1d − 3

 37. f 0s!d − sin ! 1 cos !, f s0d − 3, f 9s0d − 4

 38. f 0sxd − 8x 3 1 5,   f s1d − 0,   f 9s1d − 8

 39. f 0sxd − 2 2 12x, f s0d − 9, f s2d − 15

 40. f 0std − 2e t 1 3 sin t,  f s0d − 0,  f s"d − 0

 41.  Bacteria culture A culture of the bacterium Rhodobacter 
sphaeroides initially has 25 bacteria and t hours later 
increases at a rate of 3.4657e 0.1386 t bacteria per hour. Find the 
population size after four hours.

 42.  A sample of cesium-37 with an initial mass of 75 mg decays  
t years later at a rate of 1.7325e2 0.0231t mgyyear. Find the  
mass of the sample after 20 years.

 43.  A particle moves along a straight line with velocity function 
vstd − sin t 2 cos t and its initial displacement is ss0d − 0 m. 
Find its position function sstd.

 44.  A particle moves with acceleration function 
astd − 5 1 4t 2 2t 2. Its initial velocity is vs0d − 3 mys and 
its initial displacement is ss0d − 10 m. Find its position after 
t seconds.

 45.  A stone is dropped from the upper observation deck (the 
Space Deck) of the CN Tower, 450 m above the ground. 

  (a)  Find the distance of the stone above ground level at  
time t. Use the fact that acceleration due to gravity is 
t < 9.8 mys2.

  (b) How long does it take the stone to reach the ground?
  (c) With what velocity does it strike the ground?

 46.  To prove Theorem 1, let F and G be any two antiderivatives 
of f  on I and let H − G 2 F.

  (a)  If x1 and x2 are any two numbers in I with x1 , x2, apply 
the Mean Value Theorem on the interval fx1, x2g to show 
that Hsx1d − Hsx2d. Why does this show that H is a con-
stant function?

  (b)  Deduce Theorem 1 from the result of part (a).

 47.  The graph of f 9 is shown in the figure. Sketch the graph of f  
if f  is continuous on f0, 3g and f s0d − 2 1.

_1
x

y

0 1 2

1

2 y=fª(x)

 48.  Find a function f  such that f 9sxd − x 3 and the line x 1 y − 0 
is tangent to the graph of f.
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 7. (a) What does l’Hospital’s Rule say?
  (b)  How can you use l’Hospital’s Rule if you have a product 

f sxd tsxd where f sxd l 0 and tsxd l ` as x l a?
  (c)  How can you use l’Hospital’s Rule if you have a differ-

ence f sxd 2 tsxd where f sxd l ` and tsxd l ` as  
x l a?

 8. (a)  What is an equilibrium of the recursive sequence 
xt1 1 − f sxtd?

  (b)  What is a stable equilibrium? An unstable equilibrium?
  (c) State the Stability Criterion.

 9. (a) What is an antiderivative of a function f ?
  (b)  Suppose F1 and F2 are both antiderivatives of f  on an  

interval I. How are F1 and F2 related?

Answers to the Concept Check can be found on the back 
endpapers.

 1.  Explain the difference between an absolute maximum and a 
local maximum. Illustrate with a sketch.

 2. (a) What does the Extreme Value Theorem say?
  (b) Explain how the Closed Interval Method works.

 3. (a) State Fermat’s Theorem.
  (b) Define a critical number of f.

 4.  State the Mean Value Theorem and give a geometric  
interpretation.

 5. (a) State the Increasing/Decreasing Test.
  (b)  What does it mean to say that f  is concave upward on an 

interval I?
  (c) State the Concavity Test.
  (d) What are inflection points? How do you find them?

 6. (a) State the First Derivative Test.
  (b) State the Second Derivative Test.
  (c)  What are the relative advantages and disadvantages of  

these tests?

CONCEPT CHECK

Chapter 4 REVIEW

  Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that 
disproves the statement.

 1. If f 9scd − 0, then f  has a local maximum or minimum at c.

 2. If f  has an absolute minimum value at c, then f 9scd − 0.

 3.  If f  is continuous on sa, bd, then f  attains an absolute max-
imum value f scd and an absolute minimum value f sd d at 
some numbers c and d in sa, bd.

 4.  If f  is differentiable and f s2 1d − f s1d, then there is a 
number c such that | c | , 1 and f 9scd − 0.

 5.  If f 9sxd , 0 for 1 , x , 6, then f  is decreasing on (1, 6).

 6.  If f 0s2d − 0, then s2, f s2dd is an inflection point of the  
curve y − f sxd.

 7.  If f 9sxd − t9sxd for 0 , x , 1, then f sxd − tsxd for 
0 , x , 1.

 8.  There exists a function f  such that f s1d − 2 2, f s3d − 0, 
and f 9sxd . 1 for all x.

 9.  There exists a function f  such that f sxd . 0, f 9sxd , 0, and 
f 0 sxd . 0 for all x.

 10.  There exists a function f  such that f sxd , 0, f 9sxd , 0, 
and f 0 sxd . 0 for all x.

 11.  If f  and t are increasing on an interval I, then f 1 t is  
increasing on I.

 12.  If f  and t are increasing on an interval I, then f 2 t is  
increasing on I.

 13.  If f  and t are increasing on an interval I, then ft is  
increasing on I.

 14.  If f  and t are positive increasing functions on an interval I, 
then ft is increasing on I.

 15.  If f  is increasing and f sxd . 0 on I, then tsxd − 1yf sxd is 
decreasing on I.

 16. If f  is even, then f 9 is even.

 17. If f  is periodic, then f 9 is periodic.

 18. lim
x l 0

 
x
e x − 1

TRUE-FALSE QUIZ

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.


