o e e WO DE the demographic, actuarial calculations made by
the Romar.ls in the third century CE (though they focused on mortality, not reproduction;
see Hutchms‘on (1978) for further description). Secondly, it was simply a single problem
in a book of solved algebraic word problems, and was not really intended to explain
population dynamics. Publications in mathematics at that time consisted of books full of
worked problems using the Arabic decimal number system (instead of Roman numerals)
for ease of calculations, and the rabbit problem was one of those problems (Devlin, 2011).
The development of calculus and the other kinds of mathematics used in the population
dynamics of this book did not begin for another four centuries.

T.he rabbit problem appears near the end of Leonardo’s book in a section called paria
coniculorum (“pairs of rabbits”). It is stated as

How many pairs of rabbits can be bred from one pair in one year? A man has one pair of rabbits at a
certain place entirely surrounded by a wall. We wish to know how many pairs can be bred from it in one
year, if the nature of these rabbits is such that they breed every month one other pair and begin to breed in
the second month after their birth. Let the first pair breed a pair in the first month, then duplicate it and
there will be 2 pairs in a month. From these pairs one, namely the first, breeds a pair in the second month,
and thus there are 3 pairs in the second month . . . (emphasis ours)

The calculations carry on as shown in Table 2.1. The time series of the total number of
adult pairs is the well-known Fibonacci series, which appears in many areas in biology and
elsewhere (Edelstein-Keshet, 2005). In addition to describing this as the first population
model, we could get carried away with identifying the origin of ideas and wonder whether
the stipulation that the population be surrounded by a wall shouldn’t also be considered
the first example of a boundary condition.

Table 2.1 Calculations for Leonardo of Pisa’s rabbit problem. Each month, m,
all rabbits born in m — 1 become juveniles, and all juveniles in m — 1 become
adults, and then all adults spawn new pairs. The series of pairs born is known
as the Fibonacci series.

Month Adult pairs Juvenile pairs Pairs born
1 1 0 1
2 1 1 1
3 2 1 2
4 2 2 3
5 5 3 >
6 8 5 8
7 13 8 13
8 21 13 21
9 34 21 34
10 55 34 35
1 89 55 g

144 89 144

-
N
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algebra, and the concept of zero to Europe from Islamic countries, where they had be

preserved.

2.1 The first population model—the rabbit problem

Leonardo of Pisa was One of the first mathematicians of the Middle Ages. We know hi
today as Fibonacci (“son of Bonacci”), which has much greater name recognition th
Leonardo of Pisa. This is perhaps the reason that the statue identified only as Leonard
of Pisa draws little attention in among many other medieval relics il the Campo i
Memoriale in the grounds of the cathedral in Pisa, famous for the leaning tOWer (Fg. 2
You can visit it yourself, without fear of running into crowds of tourists (OF most
even anyone who knows who Leonardo of Pisa was). et
In Leonardo’s 1202 book, Liber Abaci (Book of Calculation; a recent translatior is by A
2002), the first chapter begins with the phrase, “The niI;e Indian figures are: ',S'CZM
5,4, 3,2, and 1. With these nine figures, and with the sign 0, which in Arabic ®

zephir, any number whatso ; : ’ » This
ever can be written, as is demonstrated pelow.” ThE EuIOPeaﬁ

thi -
irteenth-century merchants and others to the inclusion of zero, a vital steP -
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Fig. 2.2 The distinction between (a) continous-time models (Eq. (2.1)) and (b) discrete-time
models (Eq. (2.3)). In this example, the time interval At = 1 year. In (a), r = 0.14 y"1 (increasing)
or —022y~" (decreasing); in (b) A = 1.15 and 0.8, respectively. Note that in both the increasing
and the decreasing cases, A = €/, so the continuous and discrete models are equivalent.

Discrete-time models, by contrast, keep track of the state of a system at a series of times
:epiarated hby a cert.aln time interval At (Figure 2.2b), and the fundamental mathemaflcal
ools are those of difference equations. We write difference equations in terms of how the

Xe=F [Xt—1, Xt—r] , (32.1-2)

where the integer 1 R
9erris a constant time interval. For discrete-time models, time is frequer’

. e
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The astute reader might have noticed that we have ignor‘ed the.cases w'h‘irgfrigcor :;SI; ;nld
These values provide the dividing line between the two kinds ot behz.wm o e
decline. We will return later to a further understanding of the meaning of this par icular

; ini dv state behavior of a population
growth rate, though here we note that explaining steady . ity eaantial
with a linear model would require the growth rate to be precisely zero, whi y
can never happen.

Before mogilr)lg on to nonlinear, logistic-type models, we can eval.uat‘e _the uiefullneslsl
of the exponential/geometric models. In terms of realism, at the individual .eve, a
individuals are assumed to be identical, hence both reproductive and mortality rates
are proportional to total numbers. In most biological populations, the mere presence
or absence of an individual is not a good i-state description; we need to kno'w age, at
least, to be able to specify current reproduction and mortality. Because of this, simple
exponential and geometric growth models do not allow a very realistic portrayal of
the contributions of individuals to population behavior. Single-celled organisms such as
microbes or phytoplankton might be the exception in which all individuals are essentially
identical from the perspective of reproduction and mortality rates.

At the population level, the resulting behavior is exponential or geometric increase,
which is only observed in specific situations. In the exponential and geometric growth
models, the overall population growth rate is a constant proportion of the current pop-
ulation size; there is no density dependence. In actual populations, density dependence
typically arises as populations grow large, intensifying competition for resources. Thus,
we might expect to see geometric or exponential growth in situations where abundance is
low, such as in recent introductions or in populations declining to extinction. An example
of the former is the initial growth of the ring-necked pheasant (Phasianus colchicus)
introduced to Protection Island in the Strait of Juan de Fuca (Fig. 2.3). An example of
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Fig. 2.3 Initial growth of the ring-necked pheasant
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Fig. 2.4 Decline of the winter run of chinook salmon (Oncorhynchus tshawytscha) in the Sacramento
River, California. Main plot shows the count of salmon traversing the Red Bluff Diversion Dam. Inset
plot shows the same data on semilogarithmic axes, illustrating how the slope of decrease can be
used to estimate log;o(A), the geometric growth rate; the gray curve is a linear regression fitted to the
semilog data. In the main plot, the gray curve is a discrete-time exponential model (Eq. (2.3)) using
the value of A = 0.82 obtained from the semilog plot. Redrawn from Botsford and Brittnacher (1998).

the latter is the decline of the winter run of chinook salmon (Oncorhynchus tshawytscha)
in the Sacramento River in California (Fig. 2.4). The insets in each of these examples show
the quick and easy way of estimating the per capita growth rate from an abundance time
series: when plotted on a semilogarithmic plot, the exponential (or geometric) growth
trajectory becomes a straight line, and the slope is r (or log[L]). ' ‘

In terms of pedagogical value, we have learned that constant per capita rates yield a
population whose chief characteristic is that the larg.er th.e population, the taslter.to;lal
numbers will grow. Geometric (or exponential) growth is quite relevant to one eco ngCEihy
important animal population, the population of humans on Eartl?.lThe fe;)ctt tthz:ltt thz
human population of the world is not only growing aF an expor;entlaC rzlxlteel,l 111995) o
growth rate r(t) is actually increasing with time is a crlt{cal.prob im ( (;)babl, mﬂue,nces
growing human population—although not the‘ focus of t%ns bfoo —}ize i g]a Huen
most of the problems we discuss in the population dynamics of resofu e V;'galue. tﬁat

ial and geometric models also illustrate another p01I}t 0 prav ] ha.rvest
lini?rxr)::ggg will be of little use in determining optimal harvest (i.e. how much to

ion is declining (r < O for
i imi tal harvest). If the population is
N the population should be completely harvested

on is growing (r > 0O for continuous time
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ly large, then harvest all of it. This clearly

continuous time or L < 1 in discrete time) i

right away, before it disappears. If thei [z;)lp =
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and because the model is not considered to be a realistic portrayal of population dynamics,
the optimal harvest problem is not approached using this model. See Mendelssohn (1976)
for a discussion of this point in the context of age-structured models. We will revisit
optimal harvesting with more appropriate models at the end of this chapter, and then

in more depth in Chapter 11.

2.3 Simple nonlinear models (logistic-type models)

The simple logistic model (and similar logistic-type models) has been the workhorse of

both theoretical and applied population biology. It has been the most commonly used
model of population dynamics in population and community theories, and forms the
basis of management of many populations, especially in fisheries (Chapter 11; Graham,
1935: Schaefer, 1954; Gulland, 1983). It was originally developed in the early nineteenth
century in response to the observation that models with geometric or exponential increase
did not hold for some populations of laboratory animals and some human populations.
In these, the population growth rate declined at high abundance, thus exhibiting density
dependence (Box 2.3). The form we now use most commonly was developed by Verhulst
(1838) as the simplest way of modifying the exponential model to produce an upper limit
to abundance (see Hutchinson (1978) for further historical information).

Note that the rationale in the modeling efforts associated with the logistic model is
basically inductive curve fitting of population-level data. That is, the functional form
and parameter values are phenomenological, chosen to mimic trends in population
abundance as closely as possible, with (almost) no attempt to represent the individual
level mechanism(s) that actually cause changes in population growth rate.

2.3.1 Continuous-time logistic models

Verhulst (1838) proposed that the model for exponential growth be modified to approach
a constant level by multiplying the model for exponential growth (Eq. (2.1)) by a
function that declined from one to zero, as abundance N(t) increased from zero to a new
constant, K, the carrying capacity. The basic form of the logistic equation in continuous
time is

% =N [1 - N@®)/K], (2.6)

where r is a constant, the same intrinsic rate of increase. We can obtain a solution for this
equation (i.e. the value of N(f) at any given time) fairly easily by separation of variables
(Box 2.4),

ITI(TK——N)dN =rdt (2.7a)
followed by a partial fraction expansion,
1 1
[ﬁ + K——ﬁ] dN =rdt (2.7b)
whose solution, integrated from O to ¢, is
In % —In : :

which can be written
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Fig. 2.5 Example of the logistic model (Eq. (2.6)), with intrinsic growth rate r = 0.69 and carrying
capacity K = 10. Panel (a) shows the population growth rate dN/dt as a function of population
abundance; note that the growth rate is a maximum at N = K/2 — 5. Panel (b) shows the abundance
of the population increasing from a low value (N'=0.1) to the carrying capacity (Eq. (2.7d)).

K
NGO = e (2.7d)

where C = (K - No)/Ny. Letting t go to infinity, we can see that the solution approaches K

asymptotically (Fig. 2.5b).
We can also write Eq. (2.6) in dimensionless form as

L (1-¥). (2.8)
dr

Here the tildes (e.g. N) indicate that we have rescaled the model by creating new variables
or parameters that are combinations of the originals (notice that for simplicity we some-
times write these equations omitting the (f) after N, essentially assuming it is understood
that N is the state variable that depends on time). In this case, f = rt and N = N/K. In
both cases the units cancel out in the new variable or parameter, so the model is now
unitless (i.e. has been nondimensionalized). The step of making a model nondimensional
often provides a clearer view of how it works, since the dynamical behavior of a model can
only depend on nondimensional parameters. That is, the behavior of a model (whether it
increases exponentially or reaches a stable equilibrium, for example) never depends on the
units in which model parameters or variables are measured, but rather on their magnitude
relative to one another. Here in Eq. (2.8) no parameters remain, so the value of this form
for the logistic model is that it allows us to see that changgs.ixl K simply sca.le ampli.tude
(i.e. the magnitude of N). Essentially K could be tl'lolught of simply as.the umt's assoc1ate.d
with population abundance, e.g. thousands of ind'1V1du'als, or population dfensny (pe.r ”“?t
area or volume), while changes in  simply scale time (i.e. r merely determines the time it

takes the population to reach a particular fraction Zf K)derstandmg e
: ion to aid un ;
In somewhat of a matk on

compare how the definition of linear systems
‘-onential growth (Eq. (2.1) )and the nonlinear
the first condition in Box 2.2, we ask whether
\ (t) is a solution. That is, whether
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Fig. 2.9 Demonstration of the cobwebbing procedure. (a) The function F(N) (solid curve) and the

process of simply looking up the first two values of the nextabundance. Also shown is the line of slope

— 1 (dashed line), the “replacement line,” used to identify the upper right-hand corner of the squares

used to avoid looking up values on the horizontal axis. The resulting time series is shown in (b). The
shortcut, cobwebbing process can be seen by following the arrows in (c). (d) The process is followed
through to equilibrium, using the shortcut of only drawing horizontal lines to the replacement line,

then vertical lines to the function.

2.4 Illustrating population concepts with simple models

els may lack the realism to reflect some important aspects of
ake advantage of their simplicity to introduce fundamental
hat we will be studying later. We first use the simple
strate the concept of population stability, including
flection of population persistence. The second

application uses a simple linear model in discrete time (Eq. (2.3)) with random values of
the L;'s to illustrate the effects of randomness on population persistence and probability of

i i time logistic model to give a primitive
incti example uses the continuous : | .
Ry : dence interact when trying to achieve sustainable

While simple population mod
population dynamics, we carn t
aspects of population behavior t
nonlinear model in discrete time to illu
stability about zero abundance, as a re

view of how fishing and density depen
fishing.
ith si 1 1 o-ti lels
1 j ili th simple, linear, discretc titme mox
2.4.1 ating dynamic stability Wi
il ( ax models with density dependence we

Unlike the simple linear models ;,'l“:“! ' g the solution (N;) as a function of
not write down a | ¥ determining how a dynamic systein

} possible situation. Stability analysis
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nations of parameter values will tenq to.cause t'he population
ng amplitude, cycle with increasing amplitude,
xtinct. We will begin by describing the local
re responding to being perturbed away from a
y in Box 2.5).

can determine what combi _
to increase, decrease, cycle with diminishi
persist at a constant equilibrium, OT go e
stability of deterministic populations that a i
specific equilibrium abundance (See definition of local stabili

Box 2.5 A GRAPHICAL DEFINITION OF EQUILIBRIA AND LOCAL STABILITY

We can get a clear sense of the mathematical definition of local stabili.ty by presuming that
model solutions (i.e. the possible values of N(t)) define a topographical surface that may
have various hills and valleys in it (e.g. Fig. 2.10). The shape of the landscape represents the
dynamics of the model. Possible solutions to the model equations can be represented by
the location of a ball on the surface. Figure 2.101is an example of part of such a surface that

includes a peak, a valley, and a flat region.

T/ Unstable  * T

Stable Neutral

N(t)

Fig. 2.10 A graphical illustration of dynamic stability. The black curve represents the range of
possible model solutions (values of N(t)). The black arrows indicate three possible equilibria, i.e.
places where N(t) will remain constant unless perturbed. Gray arrows indicate what will happen
if N(t) is perturbed away from any of the equilibria: it will tend to be pushed back towards the
stable equilibrium and pushed away from the unstable equilibrium. N(t) will not tend to move
in either direction if moved a short distance away from the neutral equilibrium point, it will just
remain at the new location (thus the entire flat portion of the surface is comprised of neutral
equilibria).

First we define an equilibrium, which is also referred to as a fixed point. It is a point on the
surface at which the ball will stay if not perturbed. These are indicated by arrows in Fig. 2.10.
The population can be either be locally stable or locally unstable about each equilibrium. It
is defined to be locally stable if, when perturbed a little from the equilibrium (e.g. the ball
is pushed gently), it tends to return to the equilibrium. If it tends to move away from the
equilibrium when perturbed, it is locally unstable. Continuing the topographical metaphor,
we refer to the “valley” surrounding an equilibrium as a basin of attraction. It is also possible
(although probably rare in nature) to have neutral stability, which is represented by the flat
surface in Fig. 2.10 (if the ball is pushed, it stays at the new location without rolling back or
accelerating away).

A mathematical analysis of the dynamic stability of a system is equivalent to determining
whether each equilibriumison a hill orina valley, and how steep the surrounding slopes are.

Before beginning our description of population stability. we
cal definitions in the context of the many uses of the te o

(see Table 2.3 for a summary of these definitions), Whef

must place our mathemati-

11 ECOLIOTY o it




SIMPLE POPULATION MODELS

To move incrementall
e oEb AT St t};l ;Or‘:t?}r)('i more complex examples, we can analyze stability of
) it problem from Section 2.1. Recall that in the Fibonacci

series, which emerges from th i
] e rabbit .
entries, problem, each entry is the sum of the previous two

Niyq =
t+1 = Nt + Ny (2.18a)

Once again there i e

analyzegsmall deviasti(())rllli Z?\?lggﬁf ;l* N* = 0 (this is generally true for linear models). To
o t , wWea ai i 5 .

equation, AN; = ANoA’, to obtain gain substitute the expected solution to a linear

AL =ty -1 (2.18b)
which, dividing by A" and rearranging, becomes the characteristic equation
2
A2j-1 =10, (2.18¢)

I/.Vhlch cau(l1 bg solved using the quadratic formula. The characteristic equation for this
inear model is of order 2 (i.e. the highest power of 1 is 2), so there are two roots,

/\1 = M-A — 1—\/3

Because there are two roots, the solution will be the sum of two terms, each of which is
one of the roots of the characteristic equation to the t power, multiplied by a constant.

Thus,

t t
1+4/5 =
AN¢=CI( 2‘/—> +c2<7*/g>, (2.20)

where ¢; and c; are constants whose values are determined from the initial conditions
(i.e. the starting values) of AN; and AN;_1. As time () increases the first term will be 1.618!
and the second will be (—0.618)¢, with the terms alternating in sign for the latter (because
1, is negative, the second term will be positive for even values of t but negative for odd ).
Also, as t increases the value of the first term will eventually be much larger than the value
of the second term, regardless of what the two constants are, so the value of A; is more
important to stability than the value of 1,. In this case A; > 1, so the system is unstable at
N* = 0 and will increase away from zero without bound. This illustrates a general rule of
analysis of stability of a linear system, that stability will be determined by the largest root

of the characteristic equation.

These simple examples display the essence of the stability analyses we will employ
throughout the book, with more complex models (basically actions at many more lags).
For each model we will derive a characteristic equation and find its roots. We will then

he model’s equation as we did in Eq. (2.20), that

claim that we can write the solution to t .
is as the sum of n terms (where 7 is the order of the characteristic equatlpn) that are each
a constant times a root to the power t (for discrete-time models). We .w111 then conclude
that, in the long run, the behavior of the population will be determined b}; the largest
root (sometimes the lar as we concluded from Eq. (2.20). Thus to

gest two Or three roots), ‘ '
know h population wi e will not need to run many simulations,
ow how a

11 behave in future, W ot )
root(s) of the characteristic equd ion. |
WeS:l %‘?ﬁ;ﬂly tl(;rg?(;;lelse xllaé)rtg esfvo]ve( .) o Eq. (2.20) to calculate a solution. That is, we
ability ana volve using B, ;
~at the val

'g determine if the system is stable,
"articular value of t. However, some
slution. For this particular problem,
1 and 1, then add each two values
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Fig.2.12 Using cobwebbing to characterize stability of the Ricker mo
is F(N), and the dashed line is the replacement line. The cobweb (
series (b, d, f, h) are shown for a range of parameter values that le
Parameter 8 = 1 in all panels, but parameter a (which determin
Note that the scale of the vertical axis in the left-hand panel vari
(the replacement line has slope 1 in all panels)

del. AsinFig. 2.9, the black curve
a, ¢ e g)and corresponding time
ad to different dynamic stabilities.
es the slope, K) varies as indicated.
es in order to show the cobwebbing

that the point at which the function F (N) intersec

(i.e. F[N*] = N*; in the Ricker model, N* =

bt ts the replacement line is an equilibrium
= In[a

: 1/B). To examine local stability about that
point we'deﬁne the slope of F(N) at the equilibrium to pe K. (This notatiog using K as
a normalized sl.ope. parameFer, arises in the analysis of age-structured models. Be careful
ot to confuse it with carrying capacity, we wjy use this notation again in Chapter 7.) In
the Ricker model, F'(N) = K = 1 - In(g). e o a8 He s

several values of K; these correspong to the s:?utéifr?sgrp e u f'r 4




SIMPLE POPULATION MODELS

2.4.4 What does the simple

logistic m
Sustainable fisheries? odel tell ys g,

ut Managing for

Evaluating this derivative leads to

2rN

——= 2.31b
r X 0, ( )

which simplifies to
N =K/2. (2.31¢)

This implies that the growth rate (and thus .the possible I}arvest rate) isfa; a n;axinn;rg
at K/2 (Fig. 2.5a). This characteristic of this 51rnp1.e model is the origin of the g t-qu(? i
result that the best way to harvest a population is t9 hf‘“_’es_t at a r?te that re LlCGSijl\tI 10
half of its carrying capacity. This is the point at whlclil it is increasing the fa'SteS}tl (dl /i f
is greatest), hence it can endure the greatest haryest without dechr%mg.d Ex}zler: 31 t te ;arh}t
1900s, while some viewed this approach as a umve?sal law, few l})leheve ! ‘t/ a?ed :181 es Sre :;;Ch
line répresenting the decline in dN/dt with N held in general, Toilte?sl?s é I
for other forms of the logistic mentioned earlier as log;stm-type rlnt e Cect. popﬁlation N
valuable lesson observed was that it was not necessarily optima p

yi “mi ling" level.
h h al)ll O !'Illal eld w0u1d be at more of a “midd .
ig ndance, rather that the p 1 24 A‘ ! e o 1

abundance was proportional

Schaefer (1954) applied the logistic to 2

T

S1
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E), so that catch and effort data could be used to fit

to catch per unit fishing effort (CPU

the model.
Maximizing harve
and removing the an

1ing the population near half of the Farrying cagacity
nual growth each year became.known_ as managing for maximum
sustainable yield. It was a very influential idea that dommatgd Zh(;?gr); Or?a;n;%?irge?; grllOb:EZ
through thé 1980s, and is still currently used (see Bot_sfor .( r)1 o ﬁsl-% El;ai;’-l e
brief history). It is also used in the managementl of spec1e§ otper }a‘I O.enl nd})

include suri)lus yield curves for northwest Atlantic harp seals ( cfgop zl.uslgrb a ([;C“S)
(Lett et al., 1981), a plot of the production of an unharvested species, grlzz. y e?rs frls-lgs
arctos horribilis) versus abundance (McCullough, 1981), a surplus production plot o .1 e
history information on gamebirds (Robertson al}d Rosenberg, 1988), and a derflonstratxon
that the maximum sustainable ivory yield for African elephants (Loxod{)nta africana) could
be met by gathering tusks from natural mortality (Basson and Beddmgt'on, 1991): The
logistic model continues to be used as a description of haltvest Qf many kmds.of z?nlmals
(e.g. in a recent book on wildlife and climate change, the discussion of harvesting1is based

on the logistic model; Boyce et al., 2012).

st by maintair

2.5 What have we learned in Chapter 2?

Before moving on to Chapter 3, we can ask what we have learned in Chapter 2. First we
learned some basic definitions regarding how we will represent time in population models
(discrete and continuous) and the kind of equations used for each (Section 2.2). We also
learned what linear versus nonlinear models are (Section 2.3), an important mathematical
distinction with a parallel biological interpretation (nonlinear models contain density-
dependent effects, while linear models do not). We learned some simple solutions to
differential equation models (e.g. separation of variables), and a graphical solution to some
nonlinear discrete-time models (cobwebbing).

The three illustrations with simple models of: (1) the determination of population
stability (Sections 2.4.1 and 2.4.2) and (2) the effects of random variability in populations
(Section 2.4.3) gave us a simple introduction to concepts we will be dealing with through-
out the book. In the first illustration, introduction to stability analysis, we presented a
useful way of describing general characteristics of behavior of models and populations.
With simple linear, discrete time models (Section 2.4.1) we learned that we could propose
solutions of the form N; = cA!, and come up with an algebraic equation whose solution
told us something about how the population would behave. We tried that approach with
arguably the first population model, the rabbit problem, and saw that a weighted sum
o'f two constants, each raised to t power, could reproduce the known behavior of the
FlbOHaFCI series. FrOfn Chapte.r 3 on, we will refer to these values of A as eigenvalues,
and this approach will underpin much of what we learn about population behavior. F
simple, nonlinear, discrete-time models (Section 2.4.2) we saw thatp . ehavior. 1ot
a nonzero equilibrium, and that we can form li populations wan Lave

DT Inear models of how the lation behav
near those equilibria. We also learned some of the characteristi . a-t onbe aves
we will be interested in, such as local stability and cyclic SILSUC.S of that equ.ll.lbnum that
equilibrium was also of interest because it told us hovz ; a.VIOI‘. o stat?lhty e
(essentially the opposite of the topic in the second ex pOPUIatloI'ls Ehsantione to pegiist

ample, extinction).

In the second illustration (Section 2.4.3
4.3), w
ment to our consideration of the zero equil)ibrie d 5 effects S nor S "

in population extinction, we will most oftenl

d thsa o & s
2d that when we are intere



