- 1. TRUE or FALSE? If $y = \pi^3$ then $y' = 3\pi^2$
 - (a) FALSE (b) TRUE
- 2. (*) What is the derivative of $ln((3x+2)^2)$?
 - (a) $2\frac{d}{dx}ln(3x+2)$ (b) $\frac{6}{(3x+2)}$

 - (c) $\frac{2}{(3x+2)}$ (d) $\frac{3}{(3x+2)^2}$

3. (*) Which is true for the function $f(x) = \frac{x}{x+1}$, defined on the domain $x \ge 0$?

- (a) f is monotone increasing
- (b) there is an *x* in the domain of *f* such that f(x) = 1/2
- (c) there is an *x* in the domain of *f* such that f(x) = 1.
- (d) *f* is monotone decreasing

4. Which describes the tangent line to the graph of $f(x) = x^3 - 5x$ at the point (2, f(2))?

- (a) $y = (3x^2 5)(x 2) 2$ (b) y = 7x - 16(c) y = 7x - 14
- (d) $y = 3x^2 5$
- 5. (*) Suppose that f(x) is a differentiable function defined for all real x and for which f(0) = 0 and f'(0) = 1. Then regarding the value f(x) at x = 1 we know that :
 - (a) -2 < f(1) < 2. (b) nothing (c) f(1) > 0
 - (d) f(1) = 1
- 6. TRUE or FALSE? There is an exponential function $f(x) = Ae^{kx}$, with A, k real constants, such that f(0) = -1 and $f(2) = e^2$.
 - (a) FALSE (b) TRUE
- 7. TRUE or FALSE? There is a quadratic polynomial p(x) for which p(-2) = p(3) = 0, p'(-2) > 0, and p'(3) > 0
 - (a) TRUE (b) FALSE
- 8. If $P(t) = (5)2^t$ then which of the following numbers represents P(8)/P(6)?
 - (a) 2
 - (b) 4
 - (c) 8
 - (d) 25

9. TRUE or FALSE? If $y = (e^x)^2$ then y' = 2y.

(a) FALSE(b) TRUE

10. If $P(t) = 2^t$ then which of the represents dP/dt?

(a) $t2^{t-1}$ (b) $log_e(2)2^t$ (c) $(e/2)e^t$ (d) 2^t

11. Here is the graph of a function. On what region is its derivative negative?

- (a) (*B*,*D*)
- (b) $(-\infty, A) \cup (C, \infty)$ (c) (A, E)
- (d) $(-\infty, A) \cup (C, E)$

12. Given that $10^3 = 1,000$, which of the following represents the 1st order approximation to $(1008)^{1/3}$?

- (a) 10.026593
- (b) 10 + 8/300
- (c) 10 + 8/3
- (d) 10+2
- 13. Here is the graph of a function.

Which of the following represents the graph of its derivative?

This page intentionally left blank.