- 1. H(x) = F(F(F(x))) where F(x) is a differentiable function. Suppose that F(0) = 1, F(1) = 2, F(2) = 10, F'(0) = 1/2, F'(1) = 1/3, F'(2) = -1/4. Then H'(0) is which of the following?
 - (a) $\frac{-1}{24}$
 - (b) 0
 - (c) $\frac{1}{24}$

 - (d) $\frac{-1}{12}$ (e) 1
- 2. A certain function f having continuous derivatives satisfies f(0) = 0, f(10) = 0 and f'(0) = -5. **TRUE or FALSE?** There is an *x* between 0 and 10 for which f'(x) = -.5.
 - (a) TRUE
 - (b) FALSE
- 3. The function p(x) is a 4th degree polynomial with roots 0, 1, 4 and 5. Moreover p'(4) = 3. Then, regarding p'(0) we know
 - (a) nothing : p'(0) could be any number
 - (b) p'(0) = 3
 - (c) p'(0) = 5
 - (d) only that $p'(0) \neq 0$.
 - (e) p'(0) = -12.

4. (*) Suppose that k > 0 is a constant. Which assertions hold for $N(t) = \frac{9e^{kt}}{e^{kt} + 2e^{-kt}}$?

- (a) $\lim_{t\to+\infty} N(t) = 9$
- (b) dN/dt > 0 for all values of *t* is monotone increasing
- (c) $d^2N/dt^2 > 0$ for all *t*
- (d) there is exactly one *t* with N(t) = 8.935.
- (e) $\lim_{t\to+\infty} N(t) = +\infty$
- 5. $\frac{n}{n+1} \frac{n-1}{n} =$

(a)
$$-\frac{-1}{-1}$$

(a)
$$\frac{1}{n(n+1)}$$

- (b) $\frac{1}{n(n+1)}$
- (c) none of the above (d) -2

(a)
$$\frac{1}{n+1}$$

(e) $\frac{1}{n^2}$

а

6. TRUE or FALSE?

$$\frac{1}{1 + \frac{2}{\frac{1}{1 + \frac{3}{4}}}} < 1/3$$

- (a) TRUE
- (b) FALSE

- 7. (*) a $[8(x + \frac{1}{x})^2]^{-1/3} = ?$ (a) $-\frac{1}{3}8(x^{-2/3} + (1/x)^{-2/3})$ (b) $\frac{1}{2}\frac{1}{x^2+2+(1/x)^2}$ (c) $\frac{1}{2}(x + \frac{1}{x})^{-2/3}$ (d) $8^{-2/3}(x^{-2/3} + (1/x)^{-2/3})$ (e) $8^{-2/3}(x + \frac{1}{x})^{-2/3}$
- 8. TRUE or FALSE? . $\frac{1}{2}(\frac{1}{2} + \frac{1}{3}) > \frac{2}{5}$
 - (a) FALSE
 - (b) TRUE