Midterm. Math 11A. Wtr 2020.
 March 1, 2020 VERSION 1

Name: \qquad Student ID\#: \qquad

INSTRUCTIONS: On your scantron, use a \#2 pencil to:

1. Write and bubble your student ID\#
2. Write and bubble your exam version
3. Write and bubble your last name, and first name, and , if you use one, middle initial. DO NOT USE HYPHENS.

UNSTARRED MULTIPLE CHOICE QUESTION: Have just one right answer.
STARRED QUESTIONS: May have MORE THAN ONE ANSWER. EXAMPLE: If (a) and (c) are both correct, then bubble in both (a) and (c). If you only bubble in (a) then you will get 0 points for such a starred question.

1. A certain function f having continuous derivatives satisfies $f(0)=0, f(10)=0$ and $f^{\prime}(0)=-5$. TRUE or FALSE? There is an x between 0 and 10 for which $f^{\prime}(x)=-.5$.
(a) FALSE
(b) TRUE
2. TRUE or FALSE? As long as $x \neq 0, y \neq 0$ and $x \neq y$ then we have that

$$
\frac{\left(x^{-1}+y^{-1}\right)^{-2}}{\left(x^{-1}-y^{-1}\right)^{-2}}=\frac{x^{2}+y^{2}}{x^{2}-y^{2}}
$$

(a) TRUE
(b) FALSE
3. $\left(^{*}\right.$) Which of the following fractions is represented by the infinite repeating decimal $.112112112112 \ldots$. .
(a) $\frac{112}{999}$
(b) $\frac{1}{9}+\frac{1}{999}$
(c) $\frac{1}{9}+\frac{2}{1000}$
(d) $\frac{1}{9}+\frac{1}{1000}$
4. TRUE or FALSE? . $\frac{1}{2}\left(\frac{1}{2}+\frac{1}{3}\right)>\frac{2}{5}$
(a) TRUE
(b) FALSE
5. $\frac{n}{n+1}-\frac{n-1}{n}=$
(a) $\frac{-1}{n(n+1)}$
(b) $\frac{1}{n(n+1)}$
(c) none of the above
(d) $\frac{-2}{n+1}$
(e) $\frac{1}{n^{2}}$
6. TRUE or FALSE?

$$
\frac{1}{1+\frac{2}{\frac{1}{1+\frac{3}{4}}}}<1 / 3
$$

(a) TRUE
(b) FALSE
7. Consider iterating the map $F(x)=\sin (b x)$, where $b>0$ is a real parameter. For what, if any, range of values for the parameter b are we guaranteed that F has a fixed point $x=x_{*}$ with $x_{*}>0$?
(a) none
(b) $b>1$
(c) $b>\pi / 2$
(d) any $b>0$
8. $\left(^{*}\right)$ Let $F(x)$ be the logistic map, $F(x)=r x(1-x)$ with r a real parameter. For what values of r is there a positive unstable fixed point for the map $x \mapsto F(x)$?
(a) all $r>0$
(b) all $r>1$
(c) all $r>1 / 2$
(d) no values of r
9. $\left(^{*}\right) \mathrm{a}\left[8\left(x+\frac{1}{x}\right)^{2}\right]^{-1 / 3}=$?
(a) $-\frac{1}{3} 8\left(x^{-2 / 3}+(1 / x)^{-2 / 3}\right)$
(b) $\frac{1}{2} \frac{1}{x^{2}+2+(1 / x)^{2}}$
(c) $\frac{1}{2}\left(x+\frac{1}{x}\right)^{-2 / 3}$
(d) $8^{-2 / 3}\left(x^{-2 / 3}+(1 / x)^{-2 / 3}\right)$
(e) $8^{-2 / 3}\left(x+\frac{1}{x}\right)^{-2 / 3}$
10. $\left({ }^{*}\right)$ Suppose that $k>0$ is a constant. For

$$
N(t)=\frac{9 e^{k t}}{e^{k t}+2 e^{-k t}}
$$

which of the following assertions is true?
(a) $\lim _{t \rightarrow+\infty} N(t)=9$
(b) $d N(t) / d t>0$ for all values t
(c) $d^{2} N / d t^{2}>0$ for all t
(d) there is exactly one t with $N(t)=8.935$.
(e) $\lim _{t \rightarrow+\infty} N(t)=+\infty$
11. The function $p(x)$ is a 4 th degree polynomial with roots $0,1,4$ and 5 . Moreover $p^{\prime}(4)=3$. Then, regarding $p^{\prime}(0)$ we know
(a) nothing : $p^{\prime}(0)$ could be any number
(b) $p^{\prime}(0)=3$
(c) $p^{\prime}(0)=5$
(d) only that $p^{\prime}(0) \neq 0$.
(e) $p^{\prime}(0)=-12$.
12. $H(x)=F(F(F(x)))$ where $F(x)$ is a differentiable function. Suppose that $F(0)=1, F(1)=2, F(2)=$ $0, F^{\prime}(0)=1 / 2, F^{\prime}(1)=1 / 3, F^{\prime}(2)=-1 / 4$. Then $H^{\prime}(0)$ is which of the following?
(a) $\frac{-1}{24}$
(b) 0
(c) $\frac{1}{24}$
(d) $\frac{-1}{12}$
(e) 1

This page intentionally left blank.

