QUESTION 1. A certain function f having continuous derivatives satisfies $f(0)=0, f(10)=0$ and $f^{\prime}(0)=-5$. TRUE or FALSE? There is an x between 0 and 10 for which $f^{\prime}(x)=-1 / 2$.

ANSWER: TRUE.
SOLUTION: Draw the line joining $(0, f(0))$ to $(10, f(10))$ and observe that the slope of this line is 0 . By the MEAN value theorem there must be a point between 0 and 10 such that $f^{\prime}\left(x_{*}\right)=0$. Now $f^{\prime}(x)$ takes the value -5 at $x=0$ and 0 at c_{*}, and we are told $f^{\prime}(x)$ is continuous. Apply the INTERMEDIATE value theorem to $f^{\prime}(x)$ to get tht $f^{\prime}(x)$ takes on every value between -5 and 0 as x travels between 0 and x_{*}. Since $-1 / 2$ is between -5 and 0 get that there is some $x_{* *}$ between 0 and x_{*} with $f^{\prime}\left(x_{* *}\right)=-1 / 2$. Finally, note that $0<x_{* *}<10$.

QUESTION 6.

TRUE or FALSE?

$$
\frac{1}{1+\frac{2}{\frac{1}{1+\frac{3}{4}}}}<1 / 3
$$

ANSWER: TRUE
SOLUTION 1: The fraction on the right hand side is similar to $\frac{1}{1+2}=\frac{1}{3}$. The strange fraction is of the precise form $\frac{1}{1+\frac{2}{a}}$ where $a=\frac{1}{1+\frac{3}{4}}$. If $a>1$ then $2 / a<2$ so $1+2 / a<3$ and we have that $\frac{1}{1+\frac{2}{a}}>1 / 3$. On the other hand, if $a<1$ then $2 / a>2$ and so $1+2 / a>3$ and our final fraction $\frac{1}{1+\frac{2}{a}}<1 / 3$. Well $1+3 / 4>1$ so in our case $a=1 /(1+3 / 4)<1$ and we are in the second eventuality: the strange fraction is less than $1 / 3$.

SOLUTION 2. $1+3 / 4=7 / 4$. So $1 /(1+3 / 4)=4 / 7$. So $\frac{2}{\frac{1}{1+\frac{3}{4}}}=2 /(4 / 7)=$ $14 / 4=7 / 2$. Then $1+\frac{2}{\frac{1}{1+\frac{3}{4}}}=2 / 2+7 / 2=9 / 2$. Finally, $\frac{1}{1+\frac{2}{\frac{1}{1+\frac{3}{4}}}}=1 /(9 / 2)=2 / 9<$ $3 / 9=1 / 3$.

