More Practice Final problems, WINTER 2020

1. $F(x)=r x-x^{4}$ is to be viewed as a mapping on $[0,1]$. The parameter r is positive. Note $F(0)=0$ so that 0 is a fixed point for all values of r.
a) As r increases from 0 , beyond which value of r does a new fixed point x_{*} appear for F, that is, a fixed point with $x_{*}>0$?
b) Let r continue to increase beyond the value of r found in (a). Beyond which value of r does the new fixed point x_{*} become unstable?

Similar problems to the above: end of chapter 4.5 of text.
2. Simplify $e^{2 \ln \left(x^{2}+2\right)}$
3. Suppose that p is a polynomial of degree 10 and that $p(3)=0, p^{\prime}(3)=2$
a) Compute the derivative of $f(x)=e^{p(x)}$ at $x=3$.
b) Compute the derivative of $g(x)=\ln (1+p(x))$ at $x=3$.
4. Review the binomial expansion for $f(x)=(1+x)^{\alpha}$ where α is a constant exponent.
a) Use the binomial expansion, or the linear approximation, to compute $1002^{4 / 3}$. [Note: $1000=10^{3}$.]
5. Read the last two pages of the May article, especially the conclusion. Discuss with a friend or classmate.
6. What are the maximum and minimum values of the derivative of $f(x)=\cos (7 x)$? Of $\sin (7 x)$?

Tangent line problems

6. Find an equation for the tangent line to the graphs of the following functions at the given points
a) $\sin (x)$. (i) $x=0,($ ii $) x=\pi / 3,($ iii $) x=\pi / 2$
b) $\cos (x)$. (i) $x=0,(i i) x=\pi / 3$, (iii) $x=\pi / 2$
c) $e^{3 x}-1$ (i) $x=0$, (ii) $x=-1$
d) $p(x)=1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+\ldots+100 x^{99}$, (i) just at $x=0$.

Optimization Problems

7. The distance between a point $P_{0}=\left(x_{0}, y_{0}\right)$ and a line ℓ in the plane is the answer to an optimization problem: minimize the distance $\left\|P_{0}-P\right\|$ between P and a variable point $P=(x, y) \in \ell$ and P_{0}.

Understand this as a calculus problem.
Know the formula for the distance: $\left\|P_{0}-P\right\|=\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}$.
Understand that minimizing the distance is the same as minimizing its square.

Know how to compute the minimizing point $P_{*} \in \ell$ and the value of the distance.

Example problems:
What is the distance between the origin $P_{0}=(0,0)$ and
a) the line $x=1$?
b) the line $y=1$?
c) the line $x+y=1$?
d) The distance between the point $P_{0}=(0,1)$ and the line $y=m x$ where m is a constant slope.

SUGGESTION: understand the basic geometry of this problem: Why must segment $P_{0} P_{*}$ be perpindicular to line ℓ if $P=P_{*}$ is the point minimizing the distance?
8. Theory asserts that a certain population density u as a function of time t ought to satisfy the differential equation

$$
d u / d t=\sin (u)
$$

Which of the following graphs is a possible solution to this differential equation? In these graphs the horizontal axis is t and the vertical axis is u.
a)

b)

c)

d)

e)

