21-22

25-26

SECTION 3.7 | Derivatives of the Logarithmic and Inverse Tangent Functions

229

1. Explain why the natural logarithmic function y — In ais

used much more frequently in caleulus than the other

logarithmic functions ¥ — log, a.

2-20 Differentiate the function.
2. f(x)=xlny — 1
3. f(x) = sin(In x) 4, f(x) = In(sin’y)

5. f(x) = loga(1 — 3x) 6. f(x) = log<(xe")

7. f0) = ¢YInx 8. f(x)=1Inx

x

+1
s 9. f(x) = sin x In(5x) 10. f(1) = ﬁ—z
/
21+ 1)°
P n. Fo)- 1n:;1_—];4 12 h(x) = In{x + V3T — 1)
> 1B. g(x) = In(xyx2 = 1) 14. F(y) = yIn(l + ¢%)
15. y=1In|2 — x — 5¢7/ 16. H(:) =
L 1. y=Inle + xe ) 18. v = [In(1 + 9]

. v = log:(e™*cos mx)

19. y = 2xlogix 20

21-22 Find y' and v".
2. y = £ In(2x)

23-24 Differentiate f and find the domain of f.
X

23, ) = ———n e
. 1—lInlx—1) 24. f(x) =Inlnlnx

25-26 Find an equation of the tangent line 1o the curve at the
given point.

25. y=1In(x* = 3x + 1), (3.0)
_—' 26. y=x"Inx, (1,0)
Inx ~ ’
27. 10 f(x) = :3‘ find f'(1).

28. Find equations of the tangent lines to the curve y = (In x)/x
at the points (1. 0) and (e. 1/e). Illustrate by graphing the
curve and its tangent lines.

29. Dialysis The project on page 458 madels the removal of
urca from the bloodstream via dialysis. Given that the
initial urea concentration, measured in mg/mk. is ¢ (where
¢~ 1), the duration of dialysis required for certain condi-
tions is given by the equation

WNE=Z
t=1In 5

Calculate the derivative of 1 with respect to ¢ and interpret it.

30. Geneticdrift A population of fruit flies contains two
genetically determined kinds of individuals: white-eyed
flies and red-cyed flics. Suppose that a scientist maintains
the population at constant size N by randomly choosing N
juvenile flies after reproduction to form the next generation,
Eventually, because of the random sampling in cach gener-
ation, by chance the population will contain only a single
type of fly. This is called genetic drift. Suppose that the
initial fraction of the population that are white-eyed
is po. An equation for the average number of generations
required before all flies are white-eyed (given that this
occurs instead of all flies being red-eyed) is

g= —ZN%ln(l = pa)

Calculate the derivative of g with repect to p, and explain its
meaning.

31, Carbondating If N is the measured amount of '*C in a

fossil organism and N, is the amount in living organisms,
then the estimated age of the fossil is given by the equation

g 3370 (N
In2 n N

Calculate da/dN and interpret it.

32, Let f(x) = logy(3x? — 2). For what value of bis f'(1) = 39

33-41 Use logarithmic differentiation to find the derivative of
the funetion.

Boy=@Qr+ 1’0 -3¢ 34, y = Fe'(x? + 1y
sinx tan®x %
35, y = L Xhan = g
: @+ 1) 36. vy = 4 o
37. y=x*

38. y = yomr
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49-50 Find the limit.

39. = {cos 1)’ A 3= s’ . “i(In x)
49. lim arctan(e”) 50. .‘111_1[1)‘ tan :

41, y = (tlan.)" s
42. Predator-prey dynamics In Chapter 7 we study a model 51. Find v’ if y = In(x? + y*).

for the population dynamics of a predator and its prey

species. If u(7) and v(¢) denote the prey and predator 52, Find § i1 = ¥

population sizes at time ¢, an equation relating the two is

ve 'ute ™ =c 53. Find a formula for f*(x) if f(x) = In(x — 1).

where ¢ and « are positive constants. Use logarithmic

differentiation to obtain an equation relating the relative (per ] a
capita) rate of change of predator (that is, v'/v) to that of 54. Find dx’
prey (that is, u'/ u).

9
(x*In x).

43-48 Find the derivative of the function. Simplify where 55. Usc the definition of derivative to prove that

possible.
=i 5 142 In(1 + x)
. ¥y = (tan"'x)* 44. y = tan '(x?) TR L
43. y = (tan" ') y ( [ lim ——
45. y = arctan(cos 6) 46. f(x) = x In(arctan x)

—_— 1 —% W
a7.y =tan” (v ~yT+37) 48y = arctan V1+x 56. Show that lim (1 i i) = e' forany x > 0.
n—>o n

3.8 , Linear Approximations and Taylor Polynomials

YA ) Tangent Line Approximations

)/ We have seen that a curve lies very close to its tangent line near the point of tangency. In
P fact, by zooming in toward a point on the graph of a differentiable function, we noticed
that the graph looks more and more like its tangent line. (See Figure 3.1.5.) This observa-
(@, fla)) _~ tion is the basis for a method of finding approximate values of functions.

/ The idea is that it might be easy to calculate a value f(a) of a function, but difficult
I (or even impossible) to compute nearby values of f. So we settle for the easily computed
values of the linear function L whose graph is the tangent line of f at (a, f(a)). (See
0 2 Figure 1.)

In other words, we use the tangent line at (a, f(a)) as an approximation to the curve
FIGURE 1 ¥ = f(x) when x is near a. An equation of this tangent line is

y=fla) + f'(@)(x — a)

and the approximation

(1) f(x) = fla) + f'(@)(x — a)

is called the linear approximation or tangent line approximation of fata. The linear
function whose graph is this tangent line, that is,

(2) L(x) = f(a) + f'@)(x — a)

is called the linearization of £ at q.
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