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Abstract. For the Newtonian 4-body problem in space we prove that any

zero angular momentum bounded solution suffers infinitely many coplanar in-
stants, that is, times at which all 4 bodies lie in the same plane. This result

generalizes a known result for collinear instants (“syzygies”) in the zero angu-

lar momentum planar 3-body problem, and extends to the d+1 body problem
in d-space. The proof begins by identifying the translation-reduced configu-

ration space with real d × d matrices, the degeneration locus (set of coplanar

configurations when d = 3) with the set of matrices having determinant zero,
and the mass metric with the Frobenius (standard Euclidean) norm. Let S

denote the signed distance from a matrix to the hypersurface of matrices with

determinant zero. The proof hinges on establishing a harmonic oscillator type
ODE for S along solutions. Bounds on inter-body distances then yield an

explicit lower bound ω for the frequency of this oscillator, guaranteeing a de-
generation within every time interval of length π/ω. The non-negativity of

the curvature of oriented shape space (the quotient of the translation-reduced

configuration space by the rotation group) plays a crucial role in the proof.

1. Results.

Consider the Newtonian 4 body problem in Euclidean 3-space. Typically, the
four point masses form the vertices of a tetrahedron. As the masses move about,
at isolated instants the tetrahedron which they form might degenerate so that all
4 bodies lie on a single plane. Must such co-planar instants always occur?

A solution is called bounded if the interparticle distances rab between the four
masses ma, a = 1, 2, 3, 4 are bounded for all time in the solution’s domain of defi-
nition.

Theorem 1.1. For the 4 body problem in 3-space, any bounded zero angular mo-
mentum solution defined on an infinite time interval suffers infinitely many coplanar
instants.

Thus the theorem asserts that the coplanar configurations define something like a
global slice for the spatial 4 body problem when the total angular momentum is
zero.

Theorem 1.1 follows directly from the finite time interval oscillation result, Theo-
rems 1.2 below, which in turn follows immediately from Theorem 1.4. Those results
are stated more generally, for the d + 1-body problem in d-dimensional Euclidean
space. The results were inspired by [13] which concerns the case d = 2, which is to
say the recurrence of collinearity in the case d = 2 of the zero angular momentum
planar three-body problem .
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Write qa ∈ Rd, a = 1, . . . , d + 1 for the positions of the bodies. Typically, at
each instant the qa form the vertices of a d+ 1-simplex, meaning that their convex
hull has nonzero d-dimensional volume. At special instants this volume may vanish
by virtue of all bodies instantaneously lying on some affine hyperplane. We call
these degeneration instants. Write rab = |qa− qb| for the distances between bodies,
M = Σma for the total mass and G for the universal gravitational constant. G is
included to get our units straight: GM/rab

3 has the units of 1/(time)2, the units
of a frequency squared.

Theorem 1.2. Consider any zero angular momentum solution to the standard at-
tracive (1/r potential) Newton’s equations for d+1 bodies in d-dimensional. Suppose
that along this solution the inter-body distances satisfy the bound

(1) rab ≤ c

Then, within every time interval of size 1
π ( c3

GM )1/2, this solution has a degeneration
instant.

Remark. Theorem 1.2 represents a quantitative improvement of the syzygy
estimates found earlier in the case d = 2 described above.

Necessity of zero angular momentum in even dimensions. The regular
simplex is a central configuration in all dimensions d. If the dimension d is even,
say d = 2k, then one can uniformly rotate the simplex in a way consistent with a
splitting of Rd into k two-planes to get a relative equilibrium solution to the d+ 1-
body problem in Rd which has nonzero angular momentum and never degenerates.
These even-dimensional analogues of the Lagrange rotating equilateral triangle il-
lustrate that for even dimensions d the hypothesis that the angular momentum be
zero is necessary in theorem 1.2.

Open Question. Does Theorem 1.1 hold if the zero angular momentum hy-
pothesis is dropped?

Wintner’s examples and another question. Wintner [21] describes a four-
body solution of the following form. (See the footnote on p. 245 in section 325 of
[21].) At each instant the four bodies lie in a plane. That plane spins about a fixed
line in space. The angular momentum is not zero. One can turn Wintner’s example
around with the following question. Suppose the four bodies are coplanar at each
instant and that their total angular momentum is zero. Must the instantaneous
plane containing them be fixed, constant in inertial space, so that the solution is
actually one to the planar four-body solution ? In lemma 3.3 below we answer this
question “yes”.

General two-body type potentials.. There is nothing special about the
Newtonian 1/r potential in theorem 1.2. It is enough to have a sum of pair poten-
tials of the form

(2) V (q) = GΣa 6=bmambfab(rab(q))

where the individual two-body potentials fab are attractive. (Choose the units so
that the fab have units 1/(length).) Assume that

(3) f ′ab(r) > 0, f ′′ab(r) < 0, for r > 0, and lim
r→∞

f ′ab(r)

r
= 0.

(These assumptions can probably be relaxed to some extent and still yield our
results.)Examples include the standard Newtonian 3-dimensional gravitational po-
tential fab(r) = −1/r and the power law potentials fab(r) = −kab/rα for positive
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exponent α and positive constants kab. Hypothesis (3) guarantees that the func-
tions f ′ab(r)/r are positive and strictly monotone decreasing so that for each c > 0

and pair ab we have that rab ≤ c =⇒ f ′
ab(rab)
rab

≥ δab :=
f ′
ab(c)
c . Taking δ to be the

minimum of these δab over all pairs we get

(4) rab ≤ c for all pairs ab =⇒ 1

rab
f ′ab(rab) ≥ δ > 0 for all pairs ab.

Then, we have

Theorem 1.3. Consider the zero angular momentum Newton’s equations for N =
d + 1 bodies moving in Euclidean d-dimensional space under the influence of the
attractive potential (2) whose 2-body potentials satisfy hypothesis (3). Suppose that
along such a solution all its inter-body distances rab satisfy the bound rab ≤ c.
Then, in every time interval of size (GMδ)−1/2/π, this solution has a degeneration
instant. Here δ is as in implication (4) above, and M the total mass.

We now describe the key ingredients behind these Theorems.

Definition 1.1. Σ is the degeneration locus within configuration space – the set of
configurations for which the d+ 1 masses all lie on a single affine hyperplane.

Σ is a singular hypersurface which cuts configuration space into two disjoint
congruent halves, the simplices of positive volume, and those of negative volume.
(The sign of the volume depends on the orientation of Euclidean space and the
ordering of the masses, which we fix once and for all.) Write sgn(det(q)) for the
sign of the volume, defined for q /∈ Σ. For example, if d = 3, then sgn(det(q)) is
the sign of the triple product (q2 − q1) · ((q3 − q1)× (q4 − q1)).

Definition 1.2. The signed distance S(q) of a configuration q of d+1 point masses
in Rd is the signed distance from q to the degeneration locus relative to the mass
inner product (described in subsection 3.1.1), that distance being assigned a sign
according to that of the signed volume of q:

S(q) = sign(det(q))dist(q,Σ),

with S(q) = 0 if and only if q ∈ Σ.

S is not smooth everywhere, however its singular locus has codimension 2, which
means that most solutions miss this singular set, a fact essential to our proof. On
the other hand, the singular set of the distance |S| has codimension 1 since it
contains the hypersurface Σ, and for this reason using |S| instead of S would have
complicated our proof. In Prop. 6.1 below we prove that this distance |S(q)| =
dist(q,Σ) is the smallest singular value of a d × d matrix representing q in the
center-of-mass frame.

Theorem 1.4. [Main computation.] If S is smooth along a zero angular momen-
tum solution q(t) to Newton’s equations then S(t) := S(q(t)) evolves according to

S̈ = −Sg(q, q̇), with g > 0 everywhere .

If, moreover, all interparticle distances rab satisfy rab ≤ c then g ≥ GM/c3 for
the Newtonian (fab(r) = −1/r) potential case, and, more generally, g ≥ GMδ for
potentials of the form (2), with (3) in force and δ as per (4).
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2. Motivation and Main ideas.

Newton’s N-body equations in d-space are invariant under the isometry group
of the inertial Euclidean space, Rd, so we can push them down to form a system
of ODEs on “shape space”, by which we mean the quotient space of the N-body
configuration space by the isometry group of Rd. There are actually two shape
spaces, depending on whether or not we allow orientation reversing isometries. In
the body of this paper we will work on the oriented shapes space which is the
quotient formed by using the group SE(d) of orientation-preserving isometries to
idenify configurations. In the appendix we discuss the unoriented shape space and
the map from oriented to unoriented shape space, which is a branched double cover.

We will speak of “downstairs” to mean we are working on the quotient and
“upstairs” to mean we are working on the original configuration space. Upstairs,
Newton’s equations have the form q̈ = −∇V (q). Downstairs on shape space, the
equations have precisely this same form provided that the total angular momen-
tum is zero 1. In writing down the downstairs zero-angular momentum Newton’s
equations, the acceleration q̈ is replaced by the covariant acceleration ∇q̇ q̇ where ∇
is the Levi-Civita connection arising out of the the induced shape metric downstairs.
This shape metric, induced by the flat kinetic energy metric upstairs, is curved.

Robert Littlejohn [9] pointed out to me that the shape space for 4 bodies in
R3 is homeomorphic to the Euclidean space R6. I do not use this fact, but it
is what inspired my belief that some version of the theorems stated here must
hold. Littlejohn’s observation generalizes to d+ 1 bodies in Rd: its shape space is

homeomorphic to R(d
2), a fact known to some statisticians (eg [6] and [7]). This

fact for the case d = 2 of the 3 body problem is explicit and central to all of
my explorations into the planar three-body problem. We provide details regarding
this topological fact for general d, and of the relation between the oriented and
unoriented shape space in the appendix.

We will continue to write Σ for the degeneration locus, either upstairs or down-
stairs. Downstairs, in shape space, Σ is a totally geodesic hypersurface, at least
at its smooth points. This total geodesy is strange since Σ is not totally geodesic
upstairs. For example, when d = 3, the geodesic connecting a quadrilateral lying in
one plane to another quadrilateral in an orthogonal planes consists of straight lines
along which the vertices travel, and the resulting one-parameter family in shape
space will have nonzero volume, i.e will not be planar, at most instants. To see
that total geodesy holds downstairs, choose any orientation reversing isometry R,
for example, in the case d = 3, a reflection about the xy plane. R induces an
isometric involution downstairs, one whose fixed point set is precisely Σ. A general

1If the angular momentum is non-zero there are additional ‘magnetic’ terms” in the equations

downstairs, meaning terms linear in velocities, and also additional equations involving ‘internal
variables” which represent instantaneous rigid body tumbling coupled to dynamics on the shape

space, these internal variables lying in co-adjoint orbits for SO(d).
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theorem in Riemannian geometry asserts that the fixed point set of an isometric
involution is totally geodesic implying the totally geodesic nature of Σ.

Heuristics behind the theorems. Theorem 1.4 asserts that the signed dis-
tance S from Σ behaves qualitatively like a one-dimensional harmonic oscillator,
oscillating around S = 0. The physical intuition behind this phenomenon was
pointed out to me by Mark Levi many years ago. The potential is invariant under
isometries so descends to a function downstairs. How to interpret this potential
downstairs? Write Σab ⊂ Σ for the binary collision locus rab = 0. One computes
that rab(s) = µabdist(s,Σab) where dist(s,Σab) is the distance from s to Σab and

where µab =
√
M/mamb. Consequently, re-interpreted downstairs, formula (2) for

the potential asserts that a point s in shape space is subjected to the force of an
attractive potential exerted by the

(
d
2

)
sources Σab, all of which lie in the “hyper-

plane” Σ. So, of course, the shape is always attracted to Σ! And as long as the
shape’s “vertical’ kinetic energy is not too large, it will always return to cross Σ,
oscillating forever back and forth across the attracting ‘hyperplane’ Σ.

Choice of S versus signed volume. In [13], in proving Theorem 1.1 for the
case d = 2, I used a function “z” in place of the S of Theorem 1.4. This z equals the
signed area of the oriented triangle normalized by divided the area by the moment
of inertia I that the triangle would have if all masses were assigned the value 1. The
obvious generalizations zd of this z to d > 2, namely a normalized signed volume,
did not work out. All my attempts at proving a version of Theorem 1.4 for such
a function in place of S failed. The function z2 satisfies a kind of monotonicity
relation with respect to geodesics orthogonal to Σ which fails for zd, d > 2 and
this monotonicity was required to get positivity of g in Theorem 1.4. The need for
such a relation led to introducing S. After the fact, one observes that the identity
z = S/

√
I holds for equal masses when d = 2, and fails for d > 2.)

Key ingredients to the proof. The proof of Theorem 1.4 relies on four key
facts .

• Fact 1. S satisfies the Hamilton-Jacobi equation ‖∇S‖ = 1 wherever S is
smooth. This fact implies that the integral curves of the gradient flow of S
are geodesics.
• Fact 2. The shape metric is everywhere non-negatively curved.
• Fact 3. There is a close relationship between the sign of the second funda-

mental form of distance level sets ( the {S = t}’s) from a totally geodesic
submanifold (Σ = {S = 0} ) and the sign of the curvature of the ambient
space within which the level sets lie. This relation is detailed in section 2 of
Gromov [5], see particularly p. 44 there, and recalled below as proposition
4.1.
• Fact 4. (Theorem 6.1). The singular locus of S has codimension 2. This lo-

cus, denoted Sing(S) below, consists of all points at which S is not smooth.

3. Set-up and Reduction.

The proofs of all the theorems hinge on Theorem 1.4 which is a computation. We
achieve the computation by exploiting the relations between Newton’s equations at
zero angular momentum as expressed upstairs on the usual configuration space and
downstairs on shape space. The process of pushing the equations downstairs is
referred to as “reduction”. Our reduction procedure is a metric reduction, putting
kinetic energy to the fore, as opposed to the oft-used symplectic reduction. The
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two reduction procedures are formally equivalent but the metric approach makes
our computation tractable. In this section we go through the reduction for the case
d = 3. At the end, in subsection 3.3, we describe the small changes needed for the
set-up of reduction for higher d.

Write M(k,m) for the space of k×m real matrices. The configuration space for
the 4 body problem in R3 can be naturally identified with the space M(3, 4). To
do so, think of the four vectors q1, q2, q3, q4 ∈ R3 defining the positions of the four
bodies as column vectors, and place them side-by-side to form the 3× 4 matrix

(5) q =
(
q1 q2 q3 q4

)
∈M(3, 4).

The translation subgroup R3 acts on M(3, 4) by qa 7→ qa + b, b ∈ R3, which in
matrix terms is

(6) q 7→ q + (b, b, b, b)

The quotient of M(3, 4) by this action can be identified with the matrix space
M(3, 3). This identification depends on choosing a basis for the 3-dimensional
subspace x1 + x2 + x3 + x4 = 0 of the mass label space R4. Such a choice is
equivalent a choice of “Jacobi vectors” in Celestial Mechanics but the results that
follow are independent of this choice. See the last two paragraphs of subsection
3.1.1 just below for some details.

Definition 3.1. The rank of a configuration q = (q1, q2, q3, q4) is the codimension
of the smallest affine subspace in R3 which contains all 4 vertices q1, q2, q3, q4.

Upon projection to M(3, 3) the rank of a configuration equals the rank of the
representing 3-by-3 matrix so that the degeneration locus is

Σ = {q ∈M(3, 3) : det(q) = 0}.
Fact. Σ is a singular algebraic surface whose smooth locus consists of the

matrices of rank 2.
For a sketch of a proof of this fact see the end of our Appendix and references

therein.

3.1. Oriented Shape Space. Rotations of R3 act on bothM(3, 4) and its translation-
quotient M(3, 3) by

q 7→ gq, g ∈ SO(3).

Definition 3.2. The oriented shape space Sh = Sh(3, 4) is the topological quotient
space M(3, 3)/SO(3). The quotient map M(3, 3) → Sh(3, 4) will be denoted by π.
The projection of a configuration q ∈M(3, 3) will be called “the shape” of q.

Remark. The group of orientation-preserving isometries of R3, denoted SE(3),
is made up of the translations (R3) and the rotations (SO(3)). We identify Sh(3, 4)
with the quotient M(3, 4)/SE(3), by using reduction in stages: we first quotient
by translations R3 to get M(3, 3) and then quotient it by rotations SO(3) to get to
Sh(3, 4). The projection M(3, 4)→ Sh(3, 4) will also be denoted by π.

Recall that we say that G acts freely on a set Q if whenever gq = q for some
q ∈ Q we must have that g = id ∈ G. It is well-known (see for example Prop 4.1.23
of [1]) that when a compact Lie group acts freely on a smooth manifold Q then
the quotient space Q/G is a smooth manifold in such a way that the quotient map
Q→ Q/G is a smooth submersion. SO(3) does not act freely on M(3, 3). However
the restriction of the action to the open dense set of matrices having either rank 3 or
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rank 2 is free. The rank 3 matrices form the complement of Σ. The rank 2 matrices
form the smooth points of Σ which itself a singular algebraic hypersurface, and are
open and dense within Σ. The remaining points, being the matrices of rank 1 or 0,
form the singular locus of Σ. Each such singular point q has continuous isotropy,
i.e the subgroup of SO(3) fixing q has positive dimension, being respectively a
one-parameter group of rotations or the whole group. Hence we get

Proposition 3.1. Let Mgen ⊂M(3, 3) be the dense open subset consisting of those
matrices whose rank is either 3 or 2. (The subscript ‘gen’ is for ‘generic’.) The
restriction of π : M(3, 3) → Sh(3, 4) to Mgen gives π(Mgen) ⊂ Sh(3, 4) a smooth
structure in such a way that this restricted projection is a smooth submersion. More-
over this restricted projection has the structure of a principal SO(3) bundle.

Remark. In the appendix we show that the complement of Mgen has codimen-
sion 4 within M(3, 3).

3.1.1. Newton’s Equations. To write down Newton’s equations for the motion of
the 4 bodies, we need the potential and the choice of masses. We have written
down the potential (eq (2)). A choice of mass ma > 0 for each body a = 1, 2, 3, 4
defines an inner product 〈·, ·〉 on M(3, 4) called the “mass metric” or “kinetic energy
metric” according to

1

2
〈q̇, q̇〉 =

1

2
Σ4
a=1ma|q̇a|2.

We use the absolute value symbol for the usual norm in our Euclidean inertial R3.
When we interpret q̇ ∈ M(3, 4) to represent the velocities of the four bodies then
the above expression is the usual expression for the total kinetic energy. Newton’s
equations can now be written

(7) q̈ = −∇V (q)

where the gradient ∇V is computed using the mass inner product: dV (q)(δq) =
〈∇V (q), δq〉.

The mass inner product induces an inner product on M(3, 3) and an isometric
embedding of M(3, 3) into M(3, 4). Indeed, we can identify M(3, 3) with the mass-
orthogonal subspace to the translation subspace (b, b, b, b), b ∈ R3 of eq. (6). This
orthogonal subspace equals those configurations q : R4 → R3 whose center of
mass is zero: qcm = 0, where qcm := q(~m) = m1q1 + m2q2 + m3q3 + m4q4, and
where ~m = (m1,m2,m3,m4) ∈ R4. By choosing a basis for the three-dimensional
subspace {x : x1 + x2 + x3 + x4} ⊂ R4 we may coordinatize M(3, 3) as a space of
3-by-3 matrices in such that the induced mass inner product becomes

〈q, q〉 = Tr(qtq),

namely, the inner product under which the matrix entries qij form an orthonormal
linear coordinate system. Such a basis corresponds to a choice of normalized Jacobi
vectors. Once done, Newton’s equations on the translation-reduced space M(3, 3)
have precisely the form as eq (7).

As an example of Jacobi vectors let pa be any quadruple of positive numbers
such that p1 + p2 = p3 + p4 = 1. Then the three vectors

J1 = (1,−1, 0, 0), J2 = (0, 0, 1,−1), and J3 = (−p1,−p2, p3, p4)

are a basis for the subspace {x1+x2+x3+x4 = 0} ⊂ R4. We can form such pa’s from
our masses ma by the recipe m12 = m1 +m2,m34 = m3 +m4, p1 = m1/m12, p2 =



8 RICHARD MONTGOMERY

m2/m12, p3 = m3/m34, p4 = m4/m34 Then J1, J2, J3 form an orthogonal basis for
the subspace {x1 + x2 + x3 + x4 = 0} of the mass label space R4 , relative to
the restriction of the metric m1dx

2
1 + m2dx

2
2 + m3dx

2
3 + m4dx

2
4. Normalize the Ji

to obtain the normalized Jacobi vectors Ei =
√
µiJi with normalization factors

µi computed to be 1
µ1

= 1
m1

+ 1
m2
, 1
µ2

= 1
m3

+ 1
m4

, and 1
µ3

= 1
m12

+ 1
m34

. Set

ρi = q(Ei) ∈ R3, i = 1, 2, 3. For example, ρ1 =
√
µ1(q1 − q2). If qcm = 0 then

we compute that ‖q‖2 = |ρ1|2 + |ρ2|2 + |ρ3|2. (Compare [9], eqs (2.5), (2.6), pp.
2036).) To summarize, by identifying M(3, 3) with the subspace qcm = 0 and then
expressing the resulting elements of M(3, 3) in terms of the Ei as the 3-by-3 matrix
whose columns are ρ1, ρ2, ρ3 we have realized our translation reduced space M(3, 3)
as the space of real 3-by-3 matrices in such a way that the the squared norm for
the mass inner product is equal to the usual matrix squared norm Tr(qtq).

Remark. Albouy and Chenciner [2] have developed a beautiful and deep linear
algebra which they call the algebra of “dispositions’ to explain and understand the
choosing of Jacobi vectors, their relation to the subspace {x1 +x2 +x3 +x4} ⊂ R4,
and to allow as much as possible of the reduction process to be achieved in a mass-
independent and basis-independent manner. We do not need dispositions here, but
they have steered our computations and our understanding. Also Moeckel [10] for
an exceptionally clear exposition of dispositions.

3.2. Reduced Newton’s equations. We push Newton’s equations and the ki-
netic energy metric down to shape space. For this purpose it will be helpful to keep
in mind the following generalities.

Metric projections and Riemannian submersions. Whenever we have a
metric space M with distance function dM and an onto map π : M → B we can try
to define a metric dB on B by dB(b1, b2) = dM (π−1(b1), π−1(b2)), or, in English,
the distance between points downstairs is the distance between their corresponding
fibers upstairs. When this construction works we say that π : M → B is a metric
projection or submetry. If B = M/G is the quotient of M by the action of a
compact Lie group acting on M by isometries and π is the quotient projection then
the construction always works. If, in addition, M is a manifold whose metric dM
comes from a Riemannian metric and if the G-action is free so that the quotient
map π is a smooth submersion with smooth B, then the induced distance function
dB also arises as the distance function of a Riemannian metric on M . In this case
π : M → B is a Riemannian submersion which has the following infinitesimal
meaning. The ‘vertical space” Vq ⊂ TqM through q ∈ M is defined to be the
kernel of dπq; equivalently, it is the tangent space at q to the fiber π−1(s) = Gq
through q. Define the “horizontal space” Hq to be the orthogonal complement to
the vertical: Hq = V ⊥q . Then the restriction of dπq to Hq is a linear isomorphism.
Declaring this linear isomorphism Hq → TsB to be an isometry induces an inner
product on TsB, and this inner product is independent of the point q ∈ π−1(s)
since G acts isometrically on M . Distance minimizers between fibers upstairs are
geodesics in M orthogonal to the fibers. From this follows the well-known fact that
geodesics orthogonal to fibers at one point are orthogonal at every point, and that
the geodesics downstairs in B are precisely the projections of horizontal geodesics
upstairs.
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In this way, starting from the mass metric on M(3, 4) or M(3, 3), we get a metric
on Sh = Sh(3, 4) which is Riemannian at the generic shapes (those of rank 2 or 3)
and over these points is such that π : M(3, 3)→ Sh is a Riemannian submersion.

To push Newton’s equations down to Sh we must understand the dynamical
meaning of being horizontal in M(3, 3). In [12] (or [16]) I compute that q̇ is
orthogonal to the SO(3) orbit through q if and only if the total angular mo-
mentum J(q, q̇) of the pair (q, q̇) is zero. The expression for J as a function on
TM(3, 4) = M(3, 4)×M(3, 4) is J(q, q̇) = Σmaqa ∧ q̇a for M(3, 4), and is the same
when restricted to TM(3, 3) viewed as subspace of TM(3, 4). To reiterate:

(8) V ⊥q := Hq = {v ∈ TqM(3, 3) : J(q, v) = 0}
Recall that J is conserved for any potential of the form of eq (2), that is to say
J(q(t), q̇(t)) = J(q(0), q̇(0)) along solutions q(t) to Newton’s equations. Now let ∇
be the Levi-Civita connection for the shape metric. Observe that since the potential
is SE(3) invariant it also defines a projection on Sh. We will use the same symbol
V for the potential upstairs and downstairs. We have

Lemma 3.1. Any zero angular momentum solution to Newton’s equations passing
through generic (i.e. rank 2 and 3) points of M(3, 3) projects to a curve γ in shape
space which satisfies

∇γ̇ γ̇ = −∇V (γ(t)).

Conversely, the horizontal lift of such a solution is a zero-angular momentum so-
lution to Newton’s equations upstairs.

Regarding ‘horizontal lift” see, again [12] or chapter 13 of [16].
Proof. This theorem is a general fact, holding for any Hamiltonian of the form

kinetic plus potential on any manifold endowed with the smooth free action of a Lie
group which keeps both the kinetic (metric) and potentials invariant. For a proof
see for example, [16].

The special case when V = 0 will be useful below.

Lemma 3.2. Any zero angular momentum straight line q + tv in M(3, 3) projects
to a geodesic in Shape space Sh(3, 4). Conversely, the horizontal lift of any geodesic
in Sh(3, 4) is a zero-angular momentum straight line in M(3, 3). The geodesic is
parameterized by arc length if and only if ‖v‖ = 1.

A planar aside. By using the fact that the constraint J = 0 of eq (8) defines
a connection on the principal SO(3) bundle U → π(U) we can prove the following

Lemma 3.3. Let q(t) = (q1(t), q2(t), q3(t), q4(t)) be a solution to the 4-body prob-
lem in R3 and suppose that for each time t in some interval all 4 bodies lie in a
(possibly moving) plane Π(t) ⊂ R3. Suppose moreover that the solution has angular
momentum zero. Then the plane Π(t) is in fact a constant plane Π and the solution
is a solution to the 4-body problem restricted to this plane.

Proof. Suppose that the interval is of the form [0, ε). For simplicity, let us
assume that q(0) is in fact planar, rather than collinear. Let Π ⊂ R3 be the
plane containing the qa(0) and write W (Π) ⊂ TqM(3, 3) for the linear subspace
of all velocities tangent to Π, that is to say, the linear space of velocities v =
(v1, v2, v3, v3) ∈M(3, 3) for which each va ∈ Π. It is enough to show that

(9) CLAIM 1: q̇(0) ∈W (Π),
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since if both positions and velocities lie in the fixed plane Π, then the entire solution
q(t) lies in that plane.

Write c = π(q(0)) ∈ Sh(3, 4) for the projection of the initial configuration to
shape space and ċ = dπq(0)q̇(0) for the initial shape velocity. Since q(0) is planar
we have that c is rank 2 and so forms a smooth point of π(Σ). By the planarity
assumption we know that ċ ∈ TcΣ ⊂ TcSh(3, 4). Write hq(0) : TcSh(3, 4)→ Hq(0) ⊂
TqM(3, 3) for the horizontal lift operator. Recall that hq(0) is the inverse of the
restriction of the linear operator dπq : TqM(3, 3) → TcSh(3, 4) to the subspace
Hq(0). Then we have that q̇ = hq(0)ċ since J(q(0), q̇(0)) = 0. (Compare eq (8).)
Thus q̇(0) ∈ hq(0)(TcΣ). It follows that we have established our claim (9) once we
show that

(10) CLAIM 2: hq(0)(TcΣ) = W (Π) ∩Hq(0)

.
At this point the reader may find it instructive to compute the dimensions of

both sides of eq (10) to verify that they are both 5 dimensional hypersurfaces within
the 6 dimensional Hq(0).

To establish the claim of eq ( 10) , note that any vector v ∈ W (Π) ∩ Hq(0)

represents a deformation qa 7→ qa+εva of q(0) within the plane Π and hence projects
to a vector δc = dπq(0)v ∈ TcΣ. Moreover, any vector δc ∈ TcΣ can be so realized
as dπq(0)v for such a v since any planar deformation of q(0) can be rotated so as

to be realized within Π, and since Hq(0) = ker(dπq(0))
⊥, so that intersecting with

Hq(0) is just a way of getting rid of this rotational ambiguity in the representation.
Thus dπq(0)(W (Π) ∩Hq(0)) = TcΣ. Apply the inverse hq(0) of dπq(0) to both sides
of this last equality to obtain eq (10).

The case where q(0) is collinear rather than planar takes more work and we will
not delve into it.

3.3. Set-up for general dimension d. Going from d = 3 to general d.
The configuration space for N bodies in Rd is the space M(d,N) of d × N real
matrices. Its quotient by the translation group of Rd forms an M(d,N − 1) once
a basis for the hypersurface x1 + x2 + . . . + xN = 0 of the ‘zero centered’ mass-
label space is chosen. This basis can be viewed as a choice of Jacobi vectors. When
N = d+1 we get the translation-reduced configuration space to be the space M(d, d)
of square matrices with the degeneration locus Σ = {q : det(q) = 0}. Shape space
is Sh(d, d+ 1) = M(d, d)/SO(d) = M(d, d+ 1)/SO(d). Proposition 3.1 holds with
‘rank 2 and 3’ replaced by ‘rank d− 1 and rank d.

Introducing masses puts an inner product on the mass label space, and so on
M(d, d + 1) and on its translation quotient M(d, d). The masses also allow us to
identify M(d, d) as a linear subspace, rather than a quotient space, of M(d, d+ 1),
namely as the subspace of center-of-mass zero configurations. An orthonormal basis
for the hypersurface Σxi = 0 is equivalent to a choice of normalized Jacobi vectors
q1, . . . , qd and relative to the coordinates whose components are the coordinates
of these normalized Jacobi vectors ( qij := (qj)i) the mass-induced inner product
structure on M(d, d) becomes standard : 〈q, q〉 = tr(qtq) = Σi,jq

2
ij . The rotation

group SO(d) acts isometrically on M(d, d) by left multiplication. The action also
leaves invariant so that both the metric and the zero-angular momentum Newton’s
equation push down to the quotient shape space Sh(d, d + 1) = M(d, d)/SO(d).
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The reduction lemmas 3.1 and 3.2 for this reduced dynamics hold as stated, upon
replacing ‘3’ by ‘d’ in the obvious places.

4. Proving Theorem 1.4: signed distance as an oscillator.

We proceed to differentiate S along a solution arc which does not pass through
any singular point of S. We have

Ṡ = 〈∇S, γ̇〉
so that

S̈ = 〈∇S,∇γ̇ γ̇〉+ 〈∇γ̇∇S, γ̇〉(11)

= 〈∇S,−∇V 〉+ 〈∇γ̇∇S, γ̇〉(12)

We estimate each term of this last equation separately, showing that each term has
the form −Sg with g ≥ 0. We verify that the ‘g’ for the first term is always positive
and satisfies the stated bounds when rab ≤ c.

First term, 〈∇S,−∇V 〉. The vector field ∇S exists and is smooth in a neigh-
borhood of any smooth point p of S. The integral curve of ∇S through such a
p is the geodesic orthogonal to the level set {S = S(p)}. We will implement this
fact along Σ = {S = 0}. All rank 2 points of M(3, 3), i.e the planar configurations
of Σ, are smooth points of S, so that at such a point the integral curve of ∇S is
a geodesic orthogonal to Σ, which itself is smooth at p. (See Theorem 6.1 below.
Note that at a rank 2 point of Σ the smallest singular value, namely |S|, is zero,
while the second smallest is nonzero.) In particular these geodesics are orthogonal
to the level set S = 0, the degeneration locus Σ. These facts regarding the relation-
ship between S, its smooth points, geodesics, and ∇S hold true generally for the
signed distance function S from a hypersurface on any Riemannian manifold, and
are closely related to the fact that signed distance satisfies the Hamilton -Jacobi
equation: ‖∇S‖ = 1.

We proceed in the special case of d = 3 for this paragraph, for simplicity. The
geodesics in M(3, 3), or in shape space, are the projections of straight lines q+ tv in
M(3, 4) for which (q, v) ∈M(3, 4)×M(3, 4) has zero total angular momentum and
zero total linear momentum. See lemma 3.2 above. (Zero linear momentum arises
by identifying M(3, 3) with the zero center-of-mass configurations. Alternatively,
having zero linear momentum is equivalent to the assertion that the velocity v
is orthogonal to the translation action.) The parameter t is arclength provided
〈v, v〉 = 1. Now the smooth points q of the degeneration locus Σ are the planar
points. In order for a geodesic to be perpindicular to Σ at such a q we must have
that v is perpindicular to all δq ∈ TqΣ. By rotating, we may assume that the 4
vertices of q lie in the xy plane which we will denote by “R2”. Then any variation
δq = (δq1, δq2, δq3, δq4) with δqa ∈ R2 represents a planar variation of q and hence
a tangent vector to Σ at q. Since

〈δq, v〉 = Σma(δqa) · va
and since the δqa are arbitrary vectors in R2, we see that our tangent vector v must
have all 4 of its component vectors va perpindicular to R2, which is to say, along
the z-axis. But then, along our geodesic the squared inter-body distances are

(13) r2ab = |qa + tva)− (qb + tvb)|2 = rab(0)2 + t2|va − vb|2

where the cross term is zero since qa, qb lie in R2 while va, vb are orthogonal to R2.
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For general d, equation (13) continues to hold for a geodesic orthogonal to the
degeneration locus. Indeed, the only real difference between the proof above for
d = 3 and the proof for d > 3 is notational. Now the qa, representing a point on
the degeneration locus, can be taken to all lie in a fixed affine hyperplane of Rd so
that the variations δqa, a = 1, . . . N = d + 1 can be taken to be arbitrary vectors
tangent to the correspoding linear hyperplane Rd−1. As a consequence the va all lie
in the one-dimensional orthogonal to this Rd−1 and the computation is the same.

Now look at the negative of the potential in the gravitational case:

U = −V = GΣ
mamb

rab

along our geodesic. Each individual term mamb

rab
is strictly decreasing or constant in

t2. Indeed d
dt

1
rab(t)

= − t|vab|2
rab(t)3

= −S |vab|2
rab(t)3

, since S = t as long as the geodesic is

the unique minimizer to the degeneration locus. Summing, we obtain

〈∇S,−∇V 〉 = 〈∇S,∇U〉 = −Sg1

with

g1 = GΣmamb
|vab|2

rab(t)3
> 0

as desired.
If each rab is bounded above by c, we have that g1 ≥ G

c3 Σmamb|vab|2. But,

if Σmava = 0, we find that ‖v‖2 = Σmamb|vab|2/M (“Lagrange’s identity”) and
since we have that ‖v‖2 = 1 (since t is arclength) it follows that Σmamb|vab|2 = M
which yields g1 ≥ GM/c3, which completes the proof for the gravitational case.

In the case of a general potential satisfying hypothesis (2), (3) we get that
d
dtfab(rab) = f ′ab(rab)

d
dt (rab(t)) = f ′ab(rab)(tv

2
ab)/rab = S( f

′(rab)
rab

)(vab)
2. Summing,

we get 〈∇S,−∇V 〉 = −Sg1 with g1 = GΣmamb(
f ′(rab)
rab

)(vab)
2 > 0. Under the

boundedness assumption, eq (4) yields that f ′(rab)
rab

> δ for all pairs a, b and the
lower bound for g1 proceeds exactly as in the previous paragraph.

QED for Term 1.
Second term,〈∇v∇S, v〉. For a fixed shape p, p /∈ Sing(S)

v 7→ Qp(v, v) := 〈∇v∇S, v〉, v ∈ TpSh

is a quadratic form on the tangent space TpSh. We will show that Qp(v, v) =
−S(p)Hp(v, v) where Hp ≥ 0 is a positive semi-definite quadratic form.
The trick for achieving this inequality is to recognize the quadratic form Qp as
being essentially the second fundamental form of the equidistant hypersurface Σt
from Σ which passes through p, namely

Σt := {S = t}; where t = S(p)

and then to use a relation between the sign of such second fundamental forms and
the sign of the ambient curvature.

Take v = ∇S in Qp(v, v). Differentiate the identity 〈∇S,∇S〉 = 1 with respect
to v to see that 〈∇v∇S, v〉 = 0, so that Qp(v, v) = 0.

Take v ⊥ ∇S. Then v is tangent to Σt while ∇S is the unit normal N to Σt.
Recall that second fundamental form to a hypersurface V with unit normal vector
field N is the quadratic form Π(v, v) = v 7→ 〈∇vN, v〉 defined for vectors v tangent
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to V . It follows that for Qp(v, v) = Πp(v, v) for v ⊥ ∇S is the second fundamental
form Πp of the hypersurface Σt at the point p ∈ Σt. Summarizing:

Qp(v, v) =

{
0 for v ‖ ∇S
Πp(v, v) for v ⊥ ∇S

We recal some facts about the second fundamental form Π of a hypersurface.

• (1) A hypersurface is totally geodesic if and only if Π = 0.
• (2)Replacing the choice of unit normal N to the hypersurface by its negative
−N replaces Π by its negative −Π.

Our hypersurface Σ is totally geodesic, as mentioned earlier in ‘heuristics’. In-
deed, Σ is the fixed point set of an isometric involution i : Sh → Sh and fixed
point sets of isometric involutions are always totally geodesic. This isometric invo-
lution i, called “reflection about Σ”, is implemented by the nontrivial element of
the two-element group O(d)/SO(d). Any orientation reversing orthogonal trans-
formation R ∈ O(d) realizes this nontrivial element and acts on shape space by
sending the shape s = π(q) to i(s) = π(Rq). Now i∗S = −S from which it follows
that i∗∇S = −∇S, and thus, using item (2) above, that i∗Q = −Q. It follows that
we can write Q = −SH where i∗H = H. It remains to show that H is positive
semi-definite.

A necessary detour into curvatures.

Definition 4.1. A hypersurface is convex relative to the choice of normal N if
Π ≥ 0 for this choice of normal, and concave relative to N if Π ≤ 0 for this choice
of normal.

Example 4.1. The boundary of a convex domain having smooth boundary in Eu-
clidean space is convex in the above sense provided we use the outward pointing
normal.

Let M be a Riemannian manifold and V ⊂ M a hypersurface in M , together
with a choice of unit normal N along the hypersurface. Then close to V we have
the family Vs,−ε < s < ε of nearby equidistant hypersurfaces formed by travelling
along the geodesics tangent to the unit normal N for a distance s. By flowing along
these geodesics we also have diffeomorphisms

φs : V → Vs.

Write Π0 for the second fundamental form of V relative to N and Πs for that of the
equidistant Vs. Recall that we say that M is “non-negatively curved” if its sectional
curvatures are all positive or zero, and “non-positively curved” if all of its sectional
curvatures are all negative or zero. The following basic relationship between ex-
trinsic and intrinsic curvature is found in section 2 of Gromov [5], particularly p.
44 there.

Proposition 4.1. (See figures 1). If the ambient curvature of the Riemannian
manifold M is non-negative and if the hypersurface V ⊂M is concave with respect
to the choice of unit normal N for V , then its positive equidistants Vs, s > 0 are at
least as concave as V : φ∗sΠs ≤ Π0 ≤ 0 for s > 0.

If the ambient curvature of M is non-positive and if the hypersurface V ⊂ M
is convex with respect to N , then its positive equidistants Vs, s > 0 are at least as
convex as V : φ∗sΠs ≥ Π0 ≥ 0 for s > 0.
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End of proof for the 2nd term. By the O’Neill formula for curvature (see
Cor. 1, eq (3), p. 466 of [18]) Riemannian submersions can only increase sectional
curvatures. This fact implies that the base space B of a Riemannian submersion
is non-negatively curved provided that its total space Q is non-negatively curved.
Applying this formula to π : M(d, d) → Sh we get that Sh is a non-negatively
curved manifold at all smooth points. (Indeed the sectional curvature of a two-plane
in TpSh which is spanned by orthonormal vectors v, w ∈ TpSh is σ = 3

4‖Fp(v, w)‖2
where F is curvature of the Riemannian submersion when viewed as a principal
SO(d)-bundle. See also lemma 2, p.461 of [18] which describes the relation between
a certain tensor A defined in his corollary 1, eq (3), and the curvature.)

By proposition 4.1 and the fact that Σ = Σ0 is totally geodesic at each smooth
point, we have that each Σs, s > 0 is concave relative to ∇S, which is to say that
Qp ≤ 0 for S > 0. It follows that H ≥ 0 and by symmetry, as above, we have that
Q = −SH with H a positive semi-definite form, as desired.

QED for the second term and the proof of Theorem 1.4.

 

I

f

convex

I

1

Concave Is 0

Figure 1. The relation between the sign of the sectional curva-
tures and convexity of equidistant hypersurfaces to a totally geo-
desic submanifold. The left figure depicts an equidistant from a
geodesic in the hyperbolic plane (ambient curvature −1. The right
figure pictures an equidistant from a geodesic on the sphere (ambi-
ent intrinsic curvature 1). The first equidistant is convex relative
to the normal while the second is concave.

5. Proofs of Theorems

We prove theorems 1.1, 1.2 and 1.3 by strengthening Theorem 1.4:

Proposition 5.1. Regardless of whether or not S is smooth along the zero angular
solution γ to Newton’s equations, the composition S ◦γ is a convex function of t for
S > 0 and a concave function for S < 0. If γ is bounded with bounds rab ≤ c then
S◦γ(t) = 0 for at least one time t in each time interval of length ∆t = π(c3/GM)1/2,
in the Newtonian potential case and length π(GMδ)−1/2 for the general potential
case as per hypothesis (2), (3) and (4).
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Proof of Proposition 5.1 .
We first consider the case when S is smooth along γ, treating the general case

as a limit of the smooth case.
If S is smooth along γ then Theorem 1.4 asserts that S̈ = −Sg with g > 0 and

smooth. The convex/concave properties of S ◦ γ follow immediately. In case the
bounds on the rab are in force then we know that and g ≥ ω2 = GM/δ with δ as per
hypothesis (2), (3) and (4) in the case of general two-body potential and δ = 1/c3 in
the particular case of the Newtonian potential. Compare our differential equation
for S to the oscillator equation S̈ = −Sω2. The solutions of the later, being
S = Asin(ω(t− t0)), have successive zeros t0, t1, . . . spaced regularly at increments
of length π/ω. By the Sturm comparison theorem, between any two of these zeros

lies a zero of our S. Since 1/ω =
√
δ/GM this yields the result for the smooth

case.
For the general case, it will suffice to know that set of points at which S fails

to be smooth has codimension 2. We call this the singular set of S and denote it
by Sing(S). This assertion regarding the codimension of Sing(S) is theorem 6.1 of
the next section.

Assuming the validity of this codimension theorem 6.1, let γ be a zero angular
momentum solution to Newton’s equations. Then, by using the smooth dependence
of solutions on initial conditions, we can find a family of solutions γε in M(d, d)
which avoids Sing(S) and converges in the uniform (C0) topology (or even Ck

topology for any k) to γ on compact time intervals as ε → 0. By lemma 1, each
S◦γε is convex wherever it is positive and concave wherever negative. The properties
of being convex or concave are closed in the C0-topology, i.e. the uniform limit of
convex functions is convex. Since S ◦ γε → S ◦ γ in the C0 topology our result
for the convexity / concavity of S ◦ γ follows. We proceed to the boundedness
implications. If the original γ satisfies rab(γ(t)) ≤ c, then its approximating curves
γε almost satisfy this bound, namely, they satisfy rab(γε(t)) ≤ c+o(1) as ε→ 0, since
they C0-converge to γ. Thus, by the preceding paragraph, each S ◦γε has a zero in
any interval of length ∆t = π/ω(ε) with ω(ε) = GM/δ(ε) and δ(ε) = δ(c+ o(1)) as
per eq (4) above. (Explicitly for the Newtonian case, δ(c+ o(1)) = 1/(c+ o(1))3.)
Since S ◦ γε → S ◦ γ we see that S ◦ γ must have a zero in every time interval of
length π/ω = π

√
δ/GM .

QED
Proof of Theorems. Theorems 1.2 and 1.3 follow immediately from proposi-

tion 5.1. Theorem 1.1 is the case d = 3 of theorem 1.2.

All that remains to do now in the way of proofs is to establish that the codimen-
sion of Sing(S) is 2.

6. Singular set of S and Singular Value Decomposition.

We compute the codimension of Sing(S) ⊂ M(d, d) (theorem 6.1) and relate
the value of S(m) to the singular value decomposition of the matrix m ∈ M(d, d)
(therem 6.1).

The signed distance function S enjoys a larger symmetry group than Newton’s
equations, symmetries crucial for identifying Sing(S). We saw in subsection 3.3
that the translation-reduced configuration space is the space of square matrices
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M(d, d), that Σ ⊂ M(d, d) is given by det(q) = 0 and that by choosing an appro-
priate basis (“Jacobi vectors”) for “mass label space” we can insure that the mass
inner product agrees with the standard Euclidean inner product so that the norm
squared of a matrix is tr(qtq) = Σi,jq

2
ij . By inspection, the action

(14) q 7→ g1qg
t
2, g1, g2 ∈ O(d).

of O(d)×O(d) on M(d, d) is an isometric action which preserves Σ. It follows that
|S(q)|, which is the distance from q to Σ is invariant under this group action. The
action does not quite preserve our signed distance, since the O(d)’s can reverse
orientation. Indeed

S(g1qg
t
2) = ±S(q); where ± = det(g1)det(g1).

from which it follows that the action of SO(d)× SO(d) preserves S.
The first, or left O(d) action (g1, in eq (14)) is the usual action of rotations on the

configuration space of the N body problem in Rd. The second, or right O(d) (g2, in
eq (14)) is not a symmetry of Newton’s equations. Littlejohn and Reinsch [9] refer
to this second O(d) as the “democracy group” since its action on the matrix space
corresponds to choosing new basis for the mass label space, and, at least in the
case of equal masses, contains the permutation group which acts by interchanging
masses.

The Singular Value Decomposition [SVD] from Matrix theory (eg see [19]) is a
normal form theorem for this group action (14). This decomposition asserts that
for any q ∈ M(d, d) there is a diagonal matrix x and matrices g1, g2 ∈ O(d) such
that

(15) q = g1xg
t
2, [SV D1]

Moreover the gi can be chosen so as to force every nonzero entry of x to be positive,
and the diagonal entries to be listed in descending order, thus:

(16) x = diag(x1, x2, . . . , xd), x1 ≥ x2 ≥ . . . ≥ xd ≥ 0. [SV D2]

The diagonal x written in this form is unique. Its diagonal entries xi are called the
“ith principal values” of q. The x2i are the eigenvalues of both qtq and qqt.

Proposition 6.1. The distance function |S(q)| of q ∈M(d, d) to Σ is equal to xd
above, the dth (smallest) principal value of q.

We prove this proposition in the next subsection, below.
If we impose the constraint that (g1, g2) ∈ SO(d)× SO(d) when performing the

normal form computations, then we get the following ‘specialized’ version of the
SVD called the “pseudo-singular value decomposition” by [7] (see p. 361).

Proposition 6.2 (PsSVD). Given any q ∈ M(d, d) there is a pair (g1, g2) ∈
SO(d) × SO(d)) and a unique diagonal x = diag(x1, x2, . . . , xd) satisfying x1 ≥
x2 ≥ . . . ≥ xd−1 ≥ |xd|, and with xd < 0 allowed, such that

q = g1xg2, gi ∈ SO(d).

Then

S(q) = xd

and sign(xd) = sign(det(q)) = sign(S(q)).
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In words, the signed distance S is the last ‘signed’ singular value of q in its
pseudo-singular value decomposition.

Proof of Prop 6.2 assuming Prop 6.1. The value of det(q) cannot be
changed by acting on it by (g1, g2) ∈ SO(d)× SO(d)) and is equal to x1x2 . . . xd if
q = g1xg

t
2 with x = diag(x1, . . . , xd). Now use the SVD for q. If either one of the

elements gi of the SVD for q is in O(d) but not in SO(d) then we can premultiply
that element by diag(1, 1, . . . , 1,−1) ∈ O(d) to get a new gi ∈ SO(d) at the expense
of perhaps changing xd to −xd. Keeping track of the signs of det(q) and of S yields
that S(q) = xd, the last ‘special’ (or ‘signed’) singular value.

QED
Finally, here is the assertion we need to complete all our proofs.

Theorem 6.1. The signed distance function S : M(d, d) → R is smooth at any
point q of M(d, d) whose smallest two principal values are distinct. The comple-
mentary set, the singular locus of S, is the set of matrices q whose dth and d− 1st
singular values are equal: xd−1 = |xd|. This locus is a semi-algebraic set of codi-
mension 2 within M(d, d).

A slice. The fact underlying the proofs of the propositions and theorems just
stated (theorem 6.1 etc) is that the linear subspace D ⊂M(d, d) of diagonal matri-
ces is a global slice for our O(d)×O(d) action (eq (14)) on M(d, d). Recall that the
orbit of q ∈ M(d, d) under this action is the set {g1qgt2 : g1, g2 ∈ O(d)} ⊂ M(d, d)
and that, from basic manifold theory, the orbit is a smooth submanifold. The
assertion that D is a slice for the action means a number of things

• (a) every O(d)×O(d) orbit intersects D
• (b) the orbit intersects D orthogonally
• (c) the intersection is transverse for generic orbit (i.e generic q)

Assertion (a) follows from the SVD.
Assertion (b) is a computation. Let ξ1 and ξ2 be skew symmetric matrices

representing elements of the Lie algebra of our O(d)’s, understood to represent the
derivatives of the gi along curves passing through gi = Id. Then the tangent space
to the orbit through x for x ∈ D of the orbit consists of all d× d matrices v of the
form

(17) v = ξ1x− xξ2.

One sees by direct computation that the diagonal entries of v are all zero, so that
v ⊥ D.

Assertion (c) follows by taking “generic” matrix to mean one all of whose prin-
cipal values are distinct, and then making a more detailed computation based on
the orbit tangent space equation (17). If we take ξ2 = −ξ1 in that equation and set
ξ = ξ1 then we compute that v is skew-symmetric with entries (xi + xj)ξij where
ξij are the entries of ξ. On the other hand, if we take ξ2 = ξ1 = ξ in eq(17) we
obtain that v is a symmetric matrix with entries (xj −xi)ξij . Now if the xi are the
distinct principal values, we have that xi ± xj 6= 0 for all i 6= j and it follows easily
from this we can obtain any skew-symmetric matrix as a v as per eq (17), and that
we can also obtain any symmetric matrix v which has zeros on its diagonal. Since
any matrix at all is the sum of a symmetric and a skew-symmetric matrix we see
that the tangent space to the orbit at a generic x consists of all matrices v with
zero entries on the diagonal, which comprises the orthogonal complement to D.
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Proof of Proposition 6.1. As noted just after we introduced the action in
eq (14), the distance function |S(q)| is invariant under the O(d)×O(d) action:

|S(g1xg
t
2)| = |S(x)|.

Now det(x) = x1x2 . . . xd so that Σ∩D = {x1x2 . . . xd = 0} is the union of the d co-
ordinate hyperplanes xi = 0. The metric on M(d, d) is Euclidean in the entries, and
D is a d-dimensional linear space and in particular totally geodesic: any minimizing
geodesic connecting points of D is a line segment within D. This implies that for
x ∈ D the M(d, d)-distance of x to Σ equals the D-distance of x to Σ ∩D, that is
the distance as realized by line segments within D. It follows that the problem of
computing that distance is a problem in Euclidean geometry.

To solve the problem, let us first fix attention to the case d = 3. Observe
that x1, x2, x3 are orthonormal linear coordinates on D. The Euclidean distance
of (x1, x2, x3) from the plane x1 = 0 is |x1|. Since Σ ∩D is the union of the three
planes x1 = 0, x2 = 0 and x3 = 0, we have that

|S(x1, x2, x3)| = mini|xi|.

But this minimum is the 3rd singular value of x, namely x3 when the diagonal
values are listed as per the SVD. The same logic works for general d and yields
S(x1, . . . , xd) = mini|xi|, which is by definition the dth singular value of q. This
proves proposition 6.1.

Proof of Theorem 6.1. The case d = 2. We begin with the case d = 2 for
simplicity and intuition. The configuration space isM(2, 2). The degeneration locus
Σ = {det(q) = 0} is a quadratic cone of signature (2, 2) in the vector space M(2, 2).
The group O(2) × O(2) acts isometrically on the matrix space and the diagonal
matrices D form a global slice as described above. Write q = diag(x, y) ∈ D.
Then D ∩ Σ forms the “cross” xy = 0. Within the plane the distance function is
S(x, y) = sign(xy)min(|x|, |y|). See figure 6. The non-smooth locus of S is the
line x = y and x = −y corresponding to the matrices xI and xJ where I is the
identity and J = diag(1,−1) It now follows from symmetry that Sing(S) is the
union of two two-dimensional conical varieties intersecting at the origin, namely
RSO(2)I and RSO(2)J . Taken together this set is simply RO(2), since J ∈ O(2)
and det(J) = −1. If the masses are all equal then this singular locus corresponds
to the Lagrange points (equilateral triangles) with one cone corresponding to the
positively oriented Lagrange configurations (the north pole of the shape sphere)
and the other cone to the negatively oriented Lagrange configurations.
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Figure 2. Equidistant curves to a cross xy = 0 have corners at
which the distance function |S| fails to be smooth. This picture
models the contours of S restricted to the diagonal slice D for
d = 2. The thin red diagonal lines indicate Sing(S) ∩D.

The case d = 3. The diagonals are still a slice for the SO(3)×SO(3) action, and
S is invariant under this action. It follows that we can understand the singularity set
of S by looking at its behaviour on the diagonal matrices diag(x1, x2, x3). First,
suppose we are at a point where all xi > 0, and such that x1 > x2 > x3 > 0.
Then, S = x3 in a neighborhood of our point, which is clearly smooth. As we
move from this point towards Σ along a geodesic orthogonal to Σ, the value of
x3 = S steadily decreases until we hit x3 = 0 at which point S continues to
decrease, but smoothly. The equality S = x3 continues into the region x3 < 0
as long as x1 > x2 > |x3|. This phenomenon is invariant under permutations
of the coordinate indices. Indeed, restricted to D, we have that S(x1, x2, x3) =
xi where |S(x1, x2, x3)| = |xi| := mink|xk|. Thus the singular locus of S restricted
to D lies on the locus where |xi| = |xj | for some i 6= j. This locus is the union of 6
planes in D, so has dimension 2, or codimension 1, within D. (The singular locus
of the restriction of S to D is a bit smaller that the union of these planes, since we
do not need that all three principal values are distinct, but only the bottom, two,
i.e we only need x2 6= x3 if x1 ≥ x2 ≥ x3 ≥ 0 are the singular values.)

At first glance, one guesses that since the singular set has codimension 1 within
D, then it has overall codimension 1 within M(3, 3). This logic is wrong. Points
on the singular set of S are not generic with respect to the SO(3)× SO(3) action:
their symmetry type jumps. Orbits though points of Sing(S) have dimension 5 or
less, not 6 like the dimension of a generic point. (That the orbit through a generic
point of D is 6-dimensional is item (b) of ‘slice’ above.) Since S is invariant under
our group SO(3) × SO(3), so is its singular set, Sing(S). Thus the singular set
is the union of the orbits through the singular points of the restriction of S to D.
Sing(S) ∩D has dimension 2. If the orbit through any point of Sing(S) ∩D has
dimension 5 or less then the singular set itself has dimension at most 7 = 2 + 5.
Our space M(3, 3) has dimension 9, which yields the claimed codimension of 2.

It remains to establish that the orbits through points x ∈ Sing(S) ∩ D have
dimension 5 or less. The dimension of an orbit of Lie group action is the dimension
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of the group minus the dimension of the isotropy subgroup of that point. Our
group has dimension 6. We show that the isotropy group at such a point x has
dimension at least one. Write x = diag(x1, λ, λ) for such a singular point. Let
g(t) be the rotation about the 1st axis by t radians, and g(−t) its inverse. Clearly
g(t)xg(−t) = x, establishing that the isotropy group is at least one-dimensional, and
hence the orbit has dimension 5 = 6 − 1 or less. (A linear algebra computation,
following equation (17) , shows that this dimension is exactly 5 as long as x1 6= λ,
but is unneccessary here since all we need is that the codimension of Sing(S) is at
least 2.) In case x = diag(x1, λ,−λ) with S(x1, λ,−λ) = λ so that |x1| ≥ |λ| ≥ 0,
use left multiplication by the matrix g1 = diag(−1, 1,−1) ∈ SO(3) to replace this
x by x = (−x1, λ, λ) which lies on the same orbit as the original x but now has the
form of the computation just made. Since the orbit is homogeneous its dimension
does not depend on where on the orbit we choose to compute dimension, and we
arrive again at the fact that its dimension is 5 or less.

The case d > 3. The proof is nearly identical to the case d = 3. Sing(S)∩D has
codimension 1, being contained in the union of the hyperplanes where xi = ±xj .
At a generic point of D, which is to say, off of these hyperplanes, the SO(d)×SO(d)
action is “almost free” : the orbit’s dimenison equals that of SO(d) × SO(d), as
per item (b) of being a slice above. At a typical point on one of these hyperplanes
the isotropy algebra is again one-dimensional , consisting of rotations of the double
eigenvalue plane. (An “atypical” singular point would be one for which the three
smallest singular values are all equal and here the the isotropy algebra has dimension
at least 3.) Hence the codimension of Sing(S) is 1 + 1: 1 for the codimension
within D and 1 for the extra continuous symmetry dimension (isotropy) associated
to each such double “eigenvalue” diagonal matrix. (Sign discrepancies such as
xi = −xj 6= 0 are at first bothersome, but the trick we used in the previous
paragraph of multiplying by an element of SO(d) with ±1’s to change the entries
to xi = xj works as before. )

QED

7. Dynamical Vistas and Open Questions

Planar precursor.
The planar case of theorem 1.2 or 1.3 asserts that any bounded solution to the

planar three-body problem defined on the whole time line will suffer infinitely col-
inear instants. Colinear instances are also called “syzygies”. Non-collision syzygies
come in three flavors, 1, 2, and 3, depending on the mass in the middle. See figure
3. We can thus associate a syzygy sequence to such a solution. What syzygy se-
quences are realized? This question, still largely open, has motivated much work.
See for example [11], and also the closely related work in which braids (equivalent
to “stutter-reduced” syzygy sequences) rather than syzygy sequences are used for
the symbolic encoding [17], [20], [8] and references therein.

Theorem 1.1 asserts that that any bounded solution to the spatial four-body
problem defined on the whole time line will suffer infinitely coplanar instants. The
generic coplanar configurations divide into 7 types as shown in figure 4. (We have
excluded as “non-generic” configurations for which three of the masses are collinear.
Binary collision configurations are thus excluded.) We now have a seven letter
alphabet for potential symbol sequences, in analogy with the syzygy sequences of
planar three-body dynamics.
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Figure 3. The 3 types of generic collinear 3 body shapes.

Figure 4. The 7 types of generic planar 4 body shapes
.

Open questions for the four-body problem in space.
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Q1. Are all possible symbol sequences in this 7-letter alphabet realized by a
bounded solution having zero angular momentum?

Energy and angular momentum considerations Bounded solutions for
the Newtonian N-body problem necessarily have negative energy. (As soon as
N > 2 there are negative energy solutions which are unbounded.) Hence the
following theorem (see [14]) represents a strengthening of 1.3for the case d = 2.
Theorem: every zero angular momentum negative energy solution to the planar
three-body problem which does not end and begin in triple collision hits the collinear
locus infinitely often.

We do not know a single bounded or negative energy solution of the 4-body
problem in space which never suffers co-planarities.

More Questions.
Q2. Do there exist negative energy collision-free solutions of the spatial four

body problem which are defined over the whole time line and which never suffer
coplanar instants ?

Q3. If the answer to Q2 is ‘yes’ then are any of these never-coplanar solutions
bounded?

Q4. If the answer to Q2 is ‘yes’ do any of these never-coplanar solutions have
zero angular momentum?

In regards to these last two questions, Joseph Gerver has pointed out that there
are negative energy collision-free solutions which have no coplanar instants and are
defined over a time ray 0 ≤ t <∞. These solutions have nonzero angular momen-
tum. Take the rotating Lagrange equilateral solution for three of the bodies. Now
take the 4th body to be moving away from this triple along the line perpindiular to
the plane of the rotating triangle. If the three masses are equal then the situation is
symmetric and the 4th body will stay on this orthogonal line as it moves out. The
energy of the bound triple can be taken to be sufficiently small so that the overall
energy is negative while the 4th escaping body escapes hyperbolically to infinity.

Q5 A reconstruction question. What is the angle between the planes of
successive coplanar configurations for a solution of the zero angular momentum 4
body problem?

The analogous d = 2 question asks for the angle between lines of succsessive
collinear configurations in a solution to the zero angular momentum planar three-
body problem. This question has a nice answer (see for example [4]): the angle is
the spherical area in shape space enclosed by projection of that solution curve to
the sphere and the requisite part of the collinear equator needed to close up this
curve.

Returning to the d = 3 case, the condition of zero angular momentum defines a
connection on the principal SO(3) bundle Mgen(3, 3) → Shgen(3, 4). (See Propo-
sition 3.1). The overall rotation relating one plane to the other can be computed
in principal as the holonomy of this connection. Since the trace of a rotation ma-
trix is 1 + 2 cos(θ) where θ our reconstruction question is one of finding a useable
expression for trace of the holonomy of this connection.

The answer in the planar case is tractable because the group is Abelian. Despite
the nonAbelian nature of the connection in the d = 3 case it is conceivable that
this question regarding the trace of the nonAbelian holonomy has a similarly nice
answer.
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Appendix A. Topologies of Unoriented and Oriented Shape Space

We describe the topology of the unoriented and oriented shape space in our
case of N = d + 1 bodies in Rd and the relation between these spaces. We sketch
the proof that the unoriented shape space is homeomorphic to the positive semi-
definite cone - the closed convex cone of symmetric positive semi-definite matrices

- within the vector space Sym(d) ∼= R(d
2) of real symmetric d by d matrices while

oriented shape space is homeomorphic to this vector space itself. We also discuss
the smoothness of the shape space in relation to the configuration space.

The configuration space for the N body problem in Rd is Hom(RN ,Rd) =
M(d,N). Let E(d) and SE(d) denote the group of isometries of Rd and its
subgroup, the group of orientations preserving isometries. The unoriented shape
space is the quotient M(N, d)/E(d) while the oriented shape space is the quotient
M(N, d)/SE(d).

We form the quotient spaces in stages, first by translations, then by rotations.
As described in section 3.3 and subsection 3.1.1, the quotient of M(d,N) by the
translations is isometric to the space M(d,N −1). The remaining rotations acts on
this space by left multiplication. In case N = d + 1 we arrive at the space of real
square d-by-d matrices. with the action of the orthogonal group of space being left
multiplication by elements of O(d). Thus unoriented shape space is M(d, d)/O(d)
while oriented shape space is Sh(d, d+ 1) = M(d, d)/SO(d).

Unoriented shape space. The map

πun : M(d, d)→ Sym(d); q 7→ πun(q) := qtq

realizes the O(d) quotient: given any pair q′, q ∈ M(d, d) there exists a g ∈ O(d)
such that q′ = gq if and only if (q′)tq′ = qtq. This fact follows from a basic theorem
from representation theory. The matrix qtq is sometimes called the ‘Gram matrix’,
being a matrix of inner products of the position vectors qa. Any matrix of form qtq
is positive semi-definite, and any positive semi-definite matrix s can be expresses
as s = qtq for some q ∈ M(d, d). (Take q =

√
s ∈ Sym(d) for example.) Thus

we identify the unoriented shape space with the image of π, which is the positive
semi-definite cone Sym+(d) ⊂ Sym(d) referred to above. The boundary of this
cone consists of those non-negative symmetric matrices whose rank is not full and
so corresponds to our degeneration locus Σ.

The map between shape spaces. When a topological group G acts properly
on space X and a proper subgroup H ⊂ G is selected, we obtain a projection
X/H → X/G between quotient spaces whose typical fiber will be G/H if the G
action is generically free, meaning that its principal orbit type has isotropy the
identity. So, in our case we get the map labelled πZ2

which completes the following
diagram and whose typical fiber is O(d)/SO(d) ∼= Z2, the two-element group:

M(d, d)

π
xx

πun

%%
Sh(d, d+ 1)

πZ2 // Sym+(d)

The map πZ2
between shape spaces is to be viewed as the map of forgetting orien-

tations.
The atypical fibers are the projections to Sh(d, d+ 1) of those points of M(d, d)

for which the O(d) action is not free , i.e the isotropy is larger than the identity.
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These are precisely the elements of Σ. It follows that our projection is a 2:1 cover
branched along Σ. Indeed, an unoriented nondegenerate simplex shape has pre-
cisely two oriented representative shapes, one with positive volume, the other with
negative volume, while degenerate shapes in oriented shape space have precisely
one representative in the unoriented shape space.

Gluing cones. Take two identical copies of a closed convex cone with nonempty
interior in any finite dimensional real vector space. Glue one copy to the other along
the boundary, using the identity map of the boundary as gluing map. Because any
such cone is homeomorphic to the closed half space (using a homogeneous degree
zero map), one sees that the result is homeomorphic to the original vector space:
we have ‘blown up’ or desingularize the boundary of the cone, turning the cone into
the vector space. These considerations yield the theorem that oriented shape space
is indeed homeomorphic to the Euclidean space Sym(d).

Smoothness and Codimension considerations.
In subsection 3.1 we recalled that if a compact group G acts freely on a manifold

Q then the quotient space Q/G inherits the structure of a smooth manifold from Q
in such a way that the quotient map Q→ Q/G is a smooth submersion. Moreover,
this map gives Q the structure of a smooth principal G-bundle over the quotient.
Our group G = SO(d) does not act freely on Q = M(d, d). However, SO(d) does
act freely upon restriction to the open dense subset of matrices Mgen which is the
direct generalization of the set given the same symbol in Proposition 3.1 above.

Definition A.1. Let Mgen denote the subset of M(d, d) consisting of matrices
which are either of full rank or rank d− 1.

Then SO(d) acts freely on Mgen. It follows that the open dense subset Shgen ⊂
Sh(d, d+ 1) of generic shapes within Sh(d, d+ 1) inherits the structure of a smooth
manifold for which the restricted quotient projection Mgen onto Shgen is a smooth
submersion.

Proposition A.1. The complement of Mgen is an algebraic subvariety of codimen-
sion 4.

Case d = 3. Think of M(3, 3) as R3 ⊗ R3∗. Then we can write any rank 1
matrix in the form m = v ⊗ α with v ∈ R3 a non-vector and α ∈ R3∗ a nonzero
covector. Thus we have a map (R3 \ 0)× (R3∗ \ 0) onto the rank 1 matrices. Since
(λv)⊗ ( 1

λα) = v ⊗ α for all λ 6= 0 the fiber of the map is one-dimensional, showing
that the image, the rank 1 matrices has dimension 6− 1 = 5. Finally, 4 = 9− 5.

General d. Write Mr ⊂ M(d, d) for the space of matrices of rank r. On pages
28 to 30 of the book [3] one finds a proof that Mr is a smooth submanifold of
M(d, d) whose codimension is (d − r)2, that is, the square of the corank. It is
easy to see that the closure of Mr consists of the union ∪j≤rMj . Now M = ∩rMr

while Mgen = Md ∩Md−1, so that M(d, d) \Mgen = ∩r<d−1Mr is the union of the
matrices of rank less than r − 1, and as such is a singular subvariety, the union
of r − 2 smooth submanifolds, the largest having dimension 22 = 4 and its closure
containing all the lower strata.

For completeness, we sketch the argument from this book that Mr is smooth
and has the stated codimension. The orbit (but not the closure of the orbit!) of the
action of a smooth Lie group acting on a smooth manifold is a smooth immersed
submanifold. GL(d)×GL(d) acts on on M(d, d) by (g1, g2) ·m = g1mg

−1
2 . Indeed,

this action corresponds to changing bases in both the domain and the range of
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m : Rd → Rd. Given m ∈Mr, by a standard argument from linear algebra we can
choose these bases in such a way as to put m into the normal form

m =

(
Ir 0
0 0

)
where Ir is the r-by-r identity matrix, which shows that Mr is a single orbit, and
thus is a smoothly immersed as a submanifold. To get the codimension perturb m
in its normal form:

m(ε) =

(
Ir + εa εb
εc εd

)
and ask that the perturbation remain of rank r. Here ε is small, and a, b, c, d
are matrices of the appropriate size to fit in the blocks. For ε small enough, and
a, b, c, d fixed, m(ε) always has rank at least r. Thus m(ε) is of rank r for small
ε if and only if all of its (r + 1) × (r + 1) minors vanish. Recall that a minor is
constructed by choosing r + 1 row indices and r + 1 column indices to extract a
square (r + 1)× (r + 1) submatrix from m(ε). If two or more of column indices or
the row indices lie outside the r × r upper block then the resulting minor vanishes
to order at least ε2. Thus the only minors vanishing to order ε come from selecting
a row index , say i, and a single column index j, outside the block, which is to say,
with i, j > r, in which case the resulting minor is εdij + O(ε2). Consequently, at
the linearized level, the equations asserting that our perturbation m(ε) has rank r
is the matrix equation d = 0 which consists of (n− r)2 scalar equations.

Finally, to see that M \Mgen is algebraic observe that it can be defined by the
vanishing of all minors of m ∈M(d, d) size (d− 2)× (d− 2).

Semi-algebraic structure of quotient. We conclude this appendix by
remarking that the shape space Sh = Sh(d, d + 1) can be identified with a semi-
algebraic subvariety of some RN . We have Sh(d, d + 1) = M(d, d)/SO(d) = V/G
is the quotient of a real finite dimensional vector space V by the orthogonal action
of a smooth Lie group G. The G-invariant polynomials PG separate G-orbits of V.
By Hilbert’s basis theorem PG is finitely generated. Choose a set of N generators
yields a polyomial map V = M(d, d)→ RN which realizes the quotient. Finally, by
the Tarski-Seidenberg theorem the image of this map is a semi-algebraic set. This
image is Sh.

It is not clear how useful this remark is. We make it with the hope that if
someone needs to ‘do calculus” at singular points of Sh it might be of use.
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