Chapter 8 Differential Equations

The general first order ordinary differential equation (ODE) is

\[\frac{dy}{dx} = F(x, y) \]

A solution to this equation on an interval \(I \subseteq \mathbb{R} \) is a function \(y = y(x) \) satisfying

\[y'(x) = F(x, y(x)) \quad \text{for all } x \in I \]

There is a large and well-developed theory concerning such problems. We restrict our attention to so-called separable equations:

\[\frac{dy}{dx} = f(x) \cdot g(y) \]

And special cases

\[\frac{dy}{dx} = f(x) \quad \text{(i.e., } g(y) = 1) \]

\[\frac{dy}{dx} = g(y) \quad \text{(i.e., } f(x) = 1) \]
Often we will take the independent variable \(x \) to be time, so write \(t \) instead of \(x \). Also, often the dependent variable will be something other than \(y \), and have something like \(N = N(t) \), i.e., problems like

\[
\frac{dN}{dt} = f(t) \quad \text{or} \quad \frac{dN}{dt} = g(N)
\]

(8.1.1) Pure Time ODEs are

\[
\frac{dt}{dx} = f(x) \quad \text{for} \quad x \in I
\]

Notice this is just an integration problem, i.e.,

\[
y(x) = \int_{x_0}^{x} f(u) \, du + C
\]

where \(x_0 \in I \). This follows from the fundamental theorem of calculus (first version).
Observe that
\[
\gamma_0 = \gamma(x_0) = 0 + c = c.
\]

Thus
\[
\gamma(x) = \gamma_0 + \int_{x_0}^{x} f(u) \, du
\]
is the unique solution to the initial value problem (IVP)
\[
\begin{cases}
\frac{dy}{dx} = f(x) & x \in I \\
\gamma(x_0) = \gamma_0
\end{cases}
\]

Note that an ODE like \(\frac{dy}{dx} = f(x) \) in general has infinitely many solutions. A single solution is specified only when the initial value \(\gamma(x_0) \) is given.
Ex. Solve the IVP.

\[\frac{dv}{dt} = \sin t \]
\[v(0) = 3 \]

Solution: \(v(t) = 4 - \cos t \)

Ex. Solve the IVP.

\[\frac{dW}{dr} = \ln r \]
\[W(1) = 4 \]

Solution: \(W(r) = r \ln r - r + 5 \)