S.6. ANTIDERIVATIVES

We begin with a simple example.

Example: Determine a function $y = F(x)$ satisfying the condition

$$\frac{dy}{dx} = 3x^2$$

or equivalently

$$F'(x) = 3x^2$$

Observe that if $y = x^3$, then $\frac{dy}{dx} = 3x^2$ so $F(x) = x^3$ solves the problem.

Note also that $y = x^3 + 2$, and $y = x^3 + 50$ satisfy the given condition equally well. In fact, any function of the form

$$y = x^3 + c$$

where c is an arbitrary constant, satisfies

$$\frac{dy}{dx} = 3x^2$$
Thus there are infinitely many valid answers to our original question.

DEFN.
A function $F(x)$ is said to be an antiderivative of $f(x)$ on an interval $I \subseteq \mathbb{R}$ if

$$F'(x) = f(x) \text{ for all } x \in I$$

We see that an antiderivative of $f(x)$ is any solution to a differential equation of the form

$$\frac{dy}{dx} = f(x)$$

And in general, such an equation has infinitely many solutions.

EX. Find antiderivatives of the following functions:

$$12x^5, 35x^6, 40x^7, \frac{y}{2}, x^2 + 2x - 1, e^x, e^{2x}, \cos x, \sin x, \sec^2 x$$

Note: Each of the above has infinitely many antiderivatives.
Recall Corollary 2 from Sec. 5.1

Corollary (P.255)

If \(f(x) \) is continuous on \([a, b]\), differentiable on \((a, b)\), and \(f'(x) = 0 \) for all \(x \in (a, b) \), then \(f(x) \) is constant on \([a, b]\).

I.e. there exist \(c \in \mathbb{R} \) such that \(f(x) = c \) for all \(x \in [a, b] \).

This corollary follows from the Mean Value Theorem. (P.255)

Notice this is the converse of the assertion that

\[
 f(x) = \text{const.} \quad \Rightarrow \quad f'(x) = 0
\]

This corollary has the following consequence.
Corollary (P. 326)

If \(F(x) \) and \(G(x) \) are two antiderivatives of \(f(x) \) on \(I \), then \(F(x) \) and \(G(x) \) differ by a constant.

i.e. There exists \(C \in \mathbb{R} \) such that

\[
G(x) = F(x) + C \quad \text{for all } x \in I.
\]

Thus to find all antiderivatives, one need find only one antiderivative.

Proof

Our hypotheses say that

\[
G'(x) = f(x) = F'(x),
\]

Whence

\[
0 = G'(x) - F'(x) = \frac{d}{dx} \left[G(x) - F(x) \right],
\]

For all \(x \in I \). Applying the earlier corollary to the function \(G(x) - F(x) \), we obtain

\[
G(x) - F(x) = C
\]

For some constant \(C \).
Ex. Find the general antiderivative (i.e., all antiderivatives) of

\[f(x) = x^4 - 3x^2 + 1 \]

We see that \(F(x) = \frac{1}{5} x^5 - x^3 + x \) is a particular antiderivative. Thus, all antiderivatives are of the form

\[C_0(x) = \frac{1}{5} x^5 - x^3 + x + C \]

Here are some particular antiderivatives:

<table>
<thead>
<tr>
<th>Function</th>
<th>Antiderivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>(kf(x))</td>
<td>(kF(x))</td>
</tr>
<tr>
<td>(f(x) + g(x))</td>
<td>(F(x) + G(x))</td>
</tr>
<tr>
<td>(x^n) (n ≠ -1)</td>
<td>(\frac{1}{n+1} x^{n+1})</td>
</tr>
<tr>
<td>(\frac{1}{x})</td>
<td>(\ln</td>
</tr>
<tr>
<td>(e^{ax})</td>
<td>(\frac{1}{a} e^{ax})</td>
</tr>
<tr>
<td>(\sin(ax))</td>
<td>(-\frac{1}{a} \cos(ax))</td>
</tr>
<tr>
<td>(\cos(ax))</td>
<td>(\frac{1}{a} \sin(ax))</td>
</tr>
<tr>
<td>(\sec^2(ax))</td>
<td>(\frac{1}{a} \tan(ax))</td>
</tr>
</tbody>
</table>
Ex: Graph the family of antiderivatives of \(f(x) = 2x \).

\[
\begin{align*}
 y &= f(x) = 2x \\
 y &= x^2 + 1 \\
 y &= x^2 \\
 y &= x^2 - 1 \\
 C(x) &= x^2 + C
\end{align*}
\]

All antiderivatives are obtained graphically by translating \(F(x) = x^2 \) vertically by an arbitrary distance \(C \).

Often, we wish to select a particular antiderivative which passes through a specific point \((x_0, y_0)\). This is called an initial value problem (IVP).

Such problems are usually stated as a differential equation.

Ex: \(\frac{dy}{dx} = 2x \) and \(y = -5 \) when \(x = 4 \)

Solve: \(y = x^2 - 21 \)
Ex. Find a function $N(t)$ satisfying

$$\frac{dN}{dt} = \frac{1}{2\sqrt{t}} \quad (t > 0)$$

and $N(0) = 20$

We have $N'(t) = \frac{1}{2} t^{-\frac{1}{2}}$ so that

$$N(t) = t^{\frac{1}{2}} + C = \sqrt{t} + C$$

Thus

$$20 = N(0) = \sqrt{0} + C$$

i.e. $C = 20$

i.e. $N(t) = \sqrt{t} + 20$

HW 5.8.1 (p. 330)

2-20 even, 38-48 even,
50-60 even, 66