CSE 16 Spring 2024 Quiz 2

Solutions

- 1. (15 Points) Determine the following power sets.
 - a. (5 Points) $\mathbb{P}(\mathbb{P}(\emptyset))$

Solution: $\mathbb{P}(\mathbb{P}(\emptyset)) = \mathbb{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\$

b. (10 Points) $\mathbb{P}(S)$ where $S = \{1, \{1\}, \{1, 2\}\}$

Solution:

 $\mathbb{P}(S) = \left\{ \emptyset, \{1\}, \{\{1\}\}, \{\{1,2\}\}, \{1,\{1\}\}, \{1,\{1,2\}\}, \{\{1\},\{1,2\}\}, \{1,\{1\},\{1,2\}\} \right\} \right\}$

2. (20 Points) Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$. Define $f: A \to B$ by

$$f \\ 1 \rightarrow a \\ 2 \rightarrow a \\ 3 \rightarrow c \\ 4 \rightarrow b$$

Answer the following questions regarding f. No justifications are necessary for a-d, but explain why your example in part (e) is correct.

- a. (4 Point) Is f injective? No
- b. (4 Point) Is f surjective? Yes
- c. (4 Point) Is f bijective? No
- d. (4 Point) Determine $f(\{2,3\})$. Solution: $f(\{2,3\}) = \{a, c\}$
- e. (4 Points) Find subsets $U, V \subseteq A$ such that $f(U) \cap f(V) \neq f(U \cap V)$.

Solution: (Note there are many valid solutions to this problem.) Let $U = \{1, 3\}$ and $V = \{2, 4\}$. Then $U \cap V = \emptyset$, whence $f(U \cap V) = f(\emptyset) = \emptyset$. On the other hand, $f(U) = \{a, c\}$ and $f(V) = \{a, b\}$, so $f(U) \cap f(V) = \{a\} \neq \emptyset$.

Some Alternate Solutions:

- $U = \{1, 3\}$ and $V = \{2, 3\}$. Then $U \cap V = \{3\}$, so $f(U \cap V) = f(\{3\}) = \{c\}$. However, $f(U) = \{a, c\}$ and $f(V) = \{a, c\}$, so $f(U) \cap f(V) = \{a, c\} \neq \{c\}$.
- $U = \{1, 3, 4\}$ and $V = \{2, 4\}$. Then $U \cap V = \{4\}$, so $f(U \cap V) = \{b\}$. But, $f(U) = \{a, b, c\}$ and $f(V) = \{a, b\}$, so $f(U) \cap f(V) = \{a, b\} \neq \{b\}$.

3. (15 Points) Show that the sequence $(1 + 2 \cdot 3^n)_{n=0}^{\infty}$ is a solution to the recurrence relation

 $a_n = 4a_{n-1} - 3a_{n-2}$ (for $n \ge 2$).

Proof:

We substitute $a_n = 1 + 2 \cdot 3^n$ into the right hand side of the above recurrence to get

$$RHS = 4a_{n-1} - 3a_{n-2}$$

= 4(1 + 2 \cdot 3^{n-1}) - 3(1 + 2 \cdot 3^{n-2})
= (4 - 3) + 8 \cdot 3^{n-1} - 6 \cdot 3^{n-2}
= 1 + 8 \cdot 3^{n-1} - 2 \cdot 3 \cdot 3^{n-2}
= 1 + (8 - 2)3^{n-1}
= 1 + 6 \cdot 3^{n-1}
= 1 + 2 \cdot 3 \cdot 3^{n-1}
= 1 + 2 \cdot 3^n
= a_n
= LHS