Quiz 1

Solutions

1. (10 Points) Prove that the exclusive-or operator is associative, $(p \oplus q) \oplus r \equiv p \oplus(q \oplus r)$, by filling in the truth table below.

Solution:

p	q	r	$p \oplus q$	$(p \oplus q) \oplus r$	$q \oplus r$	$p \oplus(q \oplus r)$	$(p \oplus q) \oplus r \leftrightarrow p \oplus(q \oplus r)$
0	0	0	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
0	0	1	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
0	1	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
0	1	1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
1	0	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
1	0	1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
1	1	0	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
1	1	1	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$

Since $(p \oplus q) \oplus r \leftrightarrow p \oplus(q \oplus r)$ is a tautology, $(p \oplus q) \oplus r \equiv p \oplus(q \oplus r)$.
2. (10 Points) Let $K(x, y)$ be the statement " x knows y ", where the domain for both x and y is the set of all people. Assume it is possible for x to know y while y does not know x, and hence $K(x, y)$ and $K(y, x)$ are different statements. Translate the following expression from first order logic into English.

$$
\exists x \exists y[(x \neq y) \wedge K(x, y) \wedge K(y, x) \wedge \forall z((z \neq x) \wedge(z \neq y) \rightarrow(\neg K(x, z) \wedge \neg K(y, z)))]
$$

Solution: 'There are two distinct persons who know each other, and no one else.'
3. (20 Points) Show that $[(p \vee q) \wedge \neg p] \rightarrow q$ is a tautology without using truth tables. Justify each step in your proof by referring to the logical equivalences listed on the attached page.

Proof:

$$
\begin{aligned}
{[(p \vee q) \wedge \neg p] \rightarrow q } & \equiv \neg[(p \vee q) \wedge \neg p] \vee q & & \text { Table7\#1 } \\
& \equiv[\neg(p \vee q) \vee \neg \neg p] \vee q & & \text { DeMorgan } \\
& \equiv[\neg(p \vee q) \vee p] \vee q & & \text { Double Negation } \\
& \equiv \neg(p \vee q) \vee(p \vee q) & & \text { Associative } \\
& \equiv T & & \text { Negation }
\end{aligned}
$$

4. (10 Points) Prove that for all $n \in \mathbb{Z}$, if $n^{3}+5$ is even, then n is odd. (Hint: use contraposition.)

Proof:

Let $n \in \mathbb{Z}$. Following the hint, we prove that if n is even, then $n^{3}+5$ is odd. Assume $n=2 k$ for some integer k. It follows that

$$
\begin{aligned}
n^{3}+5 & =(2 k)^{3}+5 \\
& =8 k^{3}+5 \\
& =\left(8 k^{3}+4\right)+1 \\
& =2\left(4 k^{3}+2\right)+1
\end{aligned}
$$

which is odd, since $4 k^{3}+2$ is an integer. Therefore $n^{3}+5$ is odd. By contraposition, we have shown that if $n^{3}+5$ is even, then n is odd.

