CSE 16 Spring 2024 Quiz 1

Solutions

1. (10 Points) Prove that the *exclusive-or* operator is associative, $(p \oplus q) \oplus r \equiv p \oplus (q \oplus r)$, by filling in the truth table below.

Solution:

p	q	r	$p \oplus q$	$(p \oplus q) \oplus r$	$q \oplus r$	$p \oplus (q \oplus r)$	$(p \oplus q) \oplus r \leftrightarrow p \oplus (q \oplus r)$
0	0	0	0	0	0	0	1
0	0	1	0	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	1	0	0	0	1
1	0	0	1	1	0	1	1
1	0	1	1	0	1	0	1
1	1	0	0	0	1	0	1
1	1	1	0	1	0	1	1

Since $(p \oplus q) \oplus r \leftrightarrow p \oplus (q \oplus r)$ is a tautology, $(p \oplus q) \oplus r \equiv p \oplus (q \oplus r)$.

2. (10 Points) Let K(x, y) be the statement "x knows y", where the domain for both x and y is the set of all people. Assume it is possible for x to know y while y does not know x, and hence K(x, y) and K(y, x) are different statements. Translate the following expression from first order logic into English.

$$\exists x \exists y \left[(x \neq y) \land K(x, y) \land K(y, x) \land \forall z \left((z \neq x) \land (z \neq y) \rightarrow \left(\neg K(x, z) \land \neg K(y, z) \right) \right) \right]$$

Solution: 'There are two distinct persons who know each other, and no one else.'

3. (20 Points) Show that $[(p \lor q) \land \neg p] \rightarrow q$ is a tautology without using truth tables. Justify each step in your proof by referring to the logical equivalences listed on the attached page.

Proof:

$$[(p \lor q) \land \neg p] \rightarrow q \equiv \neg [(p \lor q) \land \neg p] \lor q \qquad \text{Table7 #1}$$
$$\equiv [\neg (p \lor q) \lor \neg \neg p] \lor q \qquad \text{DeMorgan}$$
$$\equiv [\neg (p \lor q) \lor p] \lor q \qquad \text{Double Negation}$$
$$\equiv \neg (p \lor q) \lor (p \lor q) \qquad \text{Associative}$$
$$\equiv T \qquad \text{Negation}$$

4. (10 Points) Prove that for all $n \in \mathbb{Z}$, if $n^3 + 5$ is even, then *n* is odd. (Hint: use contraposition.)

Proof:

Let $n \in \mathbb{Z}$. Following the hint, we prove that if *n* is even, then $n^3 + 5$ is odd. Assume n = 2k for some integer *k*. It follows that

$$n^{3} + 5 = (2k)^{3} + 5$$

= $8k^{3} + 5$
= $(8k^{3} + 4) + 1$
= $2(4k^{3} + 2) + 1$,

which is odd, since $4k^3 + 2$ is an integer. Therefore $n^3 + 5$ is odd. By contraposition, we have shown that if $n^3 + 5$ is even, then *n* is odd.