CSE 16

Lab Assignment 1

Our goal in this assignment is to determine the set of all truth-value assignments that satisfy the following logical expression.

$$
\begin{equation*}
(((q \rightarrow r) \oplus(s \rightarrow t)) \rightarrow((u \rightarrow v) \oplus(w \rightarrow x))) \leftrightarrow(y \wedge z) \tag{*}
\end{equation*}
$$

Let us begin with a simpler expression for the purposes of illustration. Consider $(p \rightarrow q) \oplus r$. Using the symbol 1 for True and 0 for False, the truth table for this expression is

\boldsymbol{p}	\boldsymbol{q}	\boldsymbol{r}	$\boldsymbol{p} \rightarrow \boldsymbol{q}$	$(\boldsymbol{p} \rightarrow \boldsymbol{q}) \oplus \boldsymbol{r}$
0	0	0	1	1
0	0	1	1	0
0	1	0	1	1
0	1	1	1	0
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	0

Each truth-value assignment to the propositional variables p, q and r can thus be represented as a bit string in the order $p q r$. Such an assignment is said to satisfy an expression if it makes the expression True. We call an expression satisfiable if there exists at least one truth-value assignment that satisfies it, i.e. if the expression is not a contradiction. The truth-value assignments that satisfy $(p \rightarrow q) \oplus r$ are therefore

$$
\begin{equation*}
000 \tag{010}
\end{equation*}
$$

101
110
We will represent truth-value assignments to the propositional variables in $\left(^{*}\right)$ as bit strings of length 10 given in the order

$$
q r s t u v w x y z
$$

One can check that the assignment

$$
0110111001
$$

does not satisfy $\left({ }^{*}\right)$, and that the assignment
0000101011
does satisfy $\left({ }^{*}\right)$. The expression $\left({ }^{*}\right)$ is thus a contingency, i.e. neither a tautology nor a contradiction. In particular (*) is satisfiable.

Let m be the number of truth-value assignments satisfying (*). We have seen that $m \geq 1$, and it so happens that $m \geq 100$. Your task is to determine all m such truth-value assignments. One way to proceed would be to construct a truth table for $\left({ }^{*}\right)$, but that table would contain $2^{10}=1024$ rows. A daunting task, but not impossible. Another approach is to write a program that systematically produces all 1024 bit strings of length 10 , and print only those that satisfy $\left(^{*}\right)$. Another approach might be to carefully analyze the expression $\left({ }^{*}\right)$ to understand its structure as a logical expression, and thereby avoid constructing the full table.

In this project, you will produce a text file called lab1.txt that begins with a short paragraph describing your method (algorithm) for solving the problem. This paragraph will be followed by m lines, each line containing one of the required bit strings. Each string will be presented as a space-separated string of 0 's and 1 's, and nothing else. Furthermore, the lines will be listed in numerical order, considering the bit strings as binary numerals in the range 0 to $2^{24}-1=1023$. Submit your file to the assignment name lab1 on Gradescope before the deadline.

