CMPE 16

Homework Assignment 5

Solutions to Selected Problems

1. (5.1) \#6

Prove that for any positive integer n :

$$
\sum_{k=1}^{n} k \cdot k!=(n+1)!-1
$$

Proof:

I. When $n=1$ the above equation becomes $1 \cdot 1!=(1+1)!-1$, i.e. $1=2-1$, i.e. $1=1$, which is true. The base case is therefore satisfied.
II. Let $n \geq 1$ be chosen arbitrarily. Assume, for this n, that

$$
\sum_{k=1}^{n} k \cdot k!=(n+1)!-1
$$

We must show that

$$
\sum_{k=1}^{n+1} k \cdot k!=(n+2)!-1
$$

Thus

$$
\begin{aligned}
\sum_{k=1}^{n+1} k \cdot k! & =\left(\sum_{k=1}^{n} k \cdot k!\right)+(n+1) \cdot(n+1)! \\
& =((n+1)!-1)+(n+1) \cdot(n+1)!\quad \text { by the induction hypothesis } \\
& =((n+1)!+(n+1) \cdot(n+1)!)-1 \\
& =(n+1)!\cdot((n+1)+1)-1 \\
& =(n+1)!\cdot(n+2)-1 \\
& =(n+2)!-1
\end{aligned}
$$

The result now follows for all $n \geq 1$ by the Principle of Mathematical Induction.
2. (5.1) \#14

Prove that for every positive integer n,

$$
\sum_{k=1}^{n} k 2^{k}=(n-1) 2^{n+1}+2
$$

Proof:

I. For $n=1$ the equation says $1 \cdot 2^{1}=(1-1) 2^{1+1}+2$, i.e. $2=2$, which is true.
II. Let $n \geq 1$, and assume

$$
\sum_{k=1}^{n} k 2^{k}=(n-1) 2^{n+1}+2
$$

We must show that

$$
\sum_{k=1}^{n+1} k 2^{k}=n 2^{n+2}+2
$$

We have

$$
\begin{aligned}
\sum_{k=1}^{n+1} k 2^{k}= & \left(\sum_{k=1}^{n} k 2^{k}\right)+(n+1) 2^{n+1} \\
& =\left((n-1) 2^{n+1}+2\right)+(n+1) 2^{n+1} \quad \text { by the induction hypothesis } \\
& =((n-1)+(n+1)) 2^{n+1}+2 \\
& =2 n \cdot 2^{n+1}+2 \\
& =n 2^{n+2}+2
\end{aligned}
$$

as required. The result follows for all $n \geq 1$ by the PMI.
3. (5.3) \#14

Let F_{n} denote the $n^{\text {th }}$ Fibonacci number. Show that for all $n \geq 1$

$$
F_{n+1} F_{n-1}-F_{n}^{2}=(-1)^{n} .
$$

Proof:

I. If $n=1$, then the formula says $F_{2} F_{0}-F_{1}=(-1)^{1}$, which reduces to $0-1=-1$, which is true. The base case is therefore satisfied.
II. Let $n \geq 1$, and assume $F_{n+1} F_{n-1}-F_{n}^{2}=(-1)^{n}$. We must show $F_{n+2} F_{n}-F_{n+1}^{2}=(-1)^{n+1}$. Thus

$$
\begin{array}{rlr}
F_{n+2} F_{n}-F_{n+1}^{2} & =F_{n+2} F_{n}-F_{n+1} F_{n+1} \\
& =\left(F_{n+1}+F_{n}\right) F_{n}-F_{n+1}\left(F_{n}+F_{n-1}\right) \quad \text { by the Fibonacci recurrence } \\
& =F_{n+1} F_{n}+F_{n}^{2}-F_{n+1} F_{n}-F_{n+1} F_{n-1} & \\
& =F_{n}^{2}-F_{n+1} F_{n-1} & \\
& =-\left(F_{n+1} F_{n-1}-F_{n}^{2}\right) \\
& =-(-1)^{n} & \\
& =(-1)^{n+1} & \text { by the induction hypothesis }
\end{array}
$$

The result follows for all $n \geq 1$ by the PMI.

