CMPE 16 Homework Assignment 5 Solutions to Selected Problems

1. <u>(5.1) #6</u>

Prove that for any positive integer *n*:

$$\sum_{k=1}^{n} k \cdot k! = (n+1)! - 1.$$

Proof:

- I. When n = 1 the above equation becomes $1 \cdot 1! = (1 + 1)! 1$, i.e. 1 = 2 1, i.e. 1 = 1, which is true. The base case is therefore satisfied.
- II. Let $n \ge 1$ be chosen arbitrarily. Assume, for this *n*, that

$$\sum_{k=1}^{n} k \cdot k! = (n+1)! - 1.$$

We must show that

$$\sum_{k=1}^{n+1} k \cdot k! = (n+2)! - 1.$$

Thus

$$\sum_{k=1}^{n+1} k \cdot k! = \left(\sum_{k=1}^{n} k \cdot k!\right) + (n+1) \cdot (n+1)!$$

= $\left((n+1)! - 1\right) + (n+1) \cdot (n+1)!$ by the induction hypothesis
= $\left((n+1)! + (n+1) \cdot (n+1)!\right) - 1$
= $(n+1)! \cdot ((n+1)+1) - 1$
= $(n+1)! \cdot (n+2) - 1$
= $(n+2)! - 1.$

The result now follows for all $n \ge 1$ by the Principle of Mathematical Induction.

2. <u>(5.1) #14</u>

Prove that for every positive integer n,

$$\sum_{k=1}^{n} k2^{k} = (n-1)2^{n+1} + 2.$$

Proof:

I. For n = 1 the equation says $1 \cdot 2^1 = (1 - 1)2^{1+1} + 2$, i.e. 2 = 2, which is true.

II. Let $n \ge 1$, and assume

$$\sum_{k=1}^{n} k2^{k} = (n-1)2^{n+1} + 2.$$

We must show that

$$\sum_{k=1}^{n+1} k 2^k = n 2^{n+2} + 2.$$

We have

$$\sum_{k=1}^{n+1} k2^k = \left(\sum_{k=1}^n k2^k\right) + (n+1)2^{n+1}$$

= $((n-1)2^{n+1}+2) + (n+1)2^{n+1}$ by the induction hypothesis
= $((n-1)+(n+1))2^{n+1}+2$
= $2n \cdot 2^{n+1}+2$
= $n2^{n+2}+2$,

as required. The result follows for all $n \ge 1$ by the PMI.

3. <u>(5.3) #14</u>

Let F_n denote the n^{th} Fibonacci number. Show that for all $n \ge 1$

$$F_{n+1}F_{n-1} - F_n^2 = (-1)^n.$$

Proof:

- I. If n = 1, then the formula says $F_2F_0 F_1 = (-1)^1$, which reduces to 0 1 = -1, which is true. The base case is therefore satisfied.
- II. Let $n \ge 1$, and assume $F_{n+1}F_{n-1} F_n^2 = (-1)^n$. We must show $F_{n+2}F_n F_{n+1}^2 = (-1)^{n+1}$.

Thus

$$\begin{aligned} F_{n+2}F_n - F_{n+1}^2 &= F_{n+2}F_n - F_{n+1}F_{n+1} \\ &= (F_{n+1} + F_n)F_n - F_{n+1}(F_n + F_{n-1}) & \text{by the Fibonacci recurrence} \\ &= F_{n+1}F_n + F_n^2 - F_{n+1}F_n - F_{n+1}F_{n-1} \\ &= F_n^2 - F_{n+1}F_{n-1} \\ &= -(F_{n+1}F_{n-1} - F_n^2) \\ &= -(-1)^n & \text{by the induction hypothesis} \\ &= (-1)^{n+1} \end{aligned}$$

The result follows for all $n \ge 1$ by the PMI.