CMPE 16

Homework Assignment 4

Solutions to Selected Problems

1. (4.1) \#6

Let a, b, c and d be integers with $a \neq 0$ and $b \neq 0$. Show that if $a \mid c$ and $b \mid d$, then $a b \mid c d$.

Proof:

Assume $a \mid c$ and $b \mid d$. Then there exist $k_{1}, k_{2} \in \mathbb{Z}$ such that $c=k_{1} a$ and $d=k_{2} b$. Therefore

$$
c d=\left(k_{1} a\right) \cdot\left(k_{2} b\right)=\left(k_{1} k_{2}\right) \cdot a b
$$

showing that $a b \mid c d$.
2. (4.3) \#12

Prove that for every positive integer n, there are n consecutive composite integers. Hint: Consider the n consecutive integers starting with $(n+1)!+2$.

Proof:

Following the hint, we consider the n consecutive integers

$$
S=\{(n+1)!+2,(n+1)!+3, \ldots \ldots,(n+1)!+n,(n+1)!+(n+1)\} .
$$

We will show that each integer in S is composite. Since $(n+1)!=2 \cdot 3 \cdot \cdots \cdots n \cdot(n+1)$ is clearly divisible by each of the integers $2,3, \ldots, n,(n+1)$, we have

$$
\begin{aligned}
& 2 \mid(n+1)!+2 \\
& 3 \mid(n+1)!+3 \\
& \vdots \\
& \vdots \\
& n \mid(n+1)!+n \\
& (n+1) \mid(n+1)!+(n+1) .
\end{aligned}
$$

Therefore each of the integers in S is composite, as claimed.
3. (4.3) \#32d

Use the Euclidean Algorithm to find $\operatorname{gcd}(1529,14039)$.

Solution:

$14039=1529 \cdot 9+278$
$1529=278 \cdot 5+139$

$$
278=139 \cdot 2+0
$$

Therefore $\operatorname{gcd}(1529,14039)=139$.

