CMPE 16

Homework Assignment 3

Solutions to Selected Problems

1. $(2.3) \# 38$

Let $f(x)=a x+b$ and $g(x)=c x+d$, where a, b, c and d are constants. Determine necessary and sufficient conditions on the constants a, b, c and d so that $f \circ g=g \circ f$.

Solution:

Note $f \circ g=g \circ f$ means that $f \circ g(x)=g \circ f(x)$ for all $x \in \mathbb{R}$. We compute

$$
f \circ g(x)=f(g(x))=f(c x+d)=a(c x+d)+b=a c x+a d+b,
$$

and

$$
g \circ f(x)=g(f(x))=g(a x+b)=c(a x+b)+d=a c x+b c+d
$$

Thus for $f \circ g=g \circ f$, it is necessary and sufficient that $\boldsymbol{a d}+\boldsymbol{b}=\boldsymbol{b} \boldsymbol{c}+\boldsymbol{d}$, which can also be written as $\boldsymbol{a d}-\boldsymbol{b} \boldsymbol{c}=\boldsymbol{d}-\boldsymbol{b}$.
2. (2.4) \#40

Determine the sum $\sum_{k=99}^{200} k^{3}$.

Solution:

Using the formula

$$
\sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

we have

$$
\begin{aligned}
\sum_{k=99}^{200} k^{3} & =\sum_{k=1}^{200} k^{3}-\sum_{k=1}^{98} k^{3} \\
& =\left(\frac{200 \cdot 201}{2}\right)^{2}-\left(\frac{98 \cdot 99}{2}\right)^{2} \\
& =(100 \cdot 201)^{2}-(49 \cdot 99)^{2} \\
& =(20100)^{2}-(4851)^{2} \\
& =404,010,000-23,532,201 \\
& =\mathbf{3 8 0}, \mathbf{4 7 7}, \mathbf{7 9 9}
\end{aligned}
$$

3. $(2.5) \# 20$

Show that if $|A|=|B|$ and $|B|=|C|$, then $|A|=|C|$.

Proof:

Assume $|A|=|B|$ and $|B|=|C|$. Then there exist bijective functions $f: A \rightarrow B$ and $g: B \rightarrow C$. It will be sufficient to show that the composition $g \circ f: A \rightarrow C$ is bijective, for then $|A|=|C|$.
(1) $g \circ f$ is injective: (This was proved in lecture from $7 / 12 / 23$ on page 14 of the lecture notes.)

Let $x_{1}, x_{2} \in A$, and suppose $g \circ f\left(x_{1}\right)=g \circ f\left(x_{2}\right)$. Being bijective, both g and f are injective, and hence

$$
g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)
$$

$$
\therefore \quad f\left(x_{1}\right)=f\left(x_{2}\right) \quad \text { since } g \text { is injective }
$$

$$
\therefore \quad x_{1}=x_{2} \quad \text { since } f \text { is injective }
$$

If follows that $g \circ f$ is injective.
(2) $g \circ f$ is surjective:

Being bijective, both g and f are surjective. Let $z \in C$. Since g is surjective, there exists $y \in B$ such that $g(y)=z$. Since f is surjective, there exists $x \in A$ such that $f(x)=y$. Then

$$
g \circ f(x)=g(f(x))=g(y)=z
$$

showing that $g \circ f$ is surjective.
Since $g \circ f: A \rightarrow C$ is both injective and surjective, it is bijective and hence $|A|=|C|$.

Alternate Proof:

Assume $|A|=|B|$ and $|B|=|C|$. Then there exist bijective functions $f: A \rightarrow B$ and $g: B \rightarrow C$. It will be sufficient to show that the composition $g \circ f: A \rightarrow C$ is bijective, for then $|A|=|C|$.

Since f and g are bijective, they are invertible (as was shown in lecture on $7 / 12 / 23$) with inverses $g^{-1}: C \rightarrow B$ and $f^{-1}: B \rightarrow A$, respectively. Using the associativity of composition, we have

$$
\begin{aligned}
(g \circ f) \circ\left(f^{-1} \circ g^{-1}\right) & =\left(g \circ\left(f \circ f^{-1}\right)\right) \circ g^{-1} \\
& =\left(g \circ i_{B}\right) \circ g^{-1} \\
& =g \circ g^{-1} \\
& =i_{C},
\end{aligned}
$$

and

$$
\begin{aligned}
\left(f^{-1} \circ g^{-1}\right) \circ(g \circ f) & =f^{-1} \circ\left(\left(g^{-1} \circ g\right) \circ f\right) \\
& =f^{-1} \circ\left(i_{B} \circ f\right) \\
& =f^{-1} \circ f \\
& =i_{A}
\end{aligned}
$$

Thus $g \circ f$ is invertible with inverse $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$. Being invertible, $g \circ f: A \rightarrow C$ is bijective, and hence $|A|=|C|$.

