CMPE 16 Homework Assignment 2 Solutions to Selected Problems

1. <u>(1.7) #18a</u>

Prove (using contraposition) that for any integer n, if 3n + 2 is even, then n is even.

Proof:

We prove the contrapositive statement: if *n* is odd, then 3n + 2 is odd.

Let $n \in \mathbb{Z}$ and assume *n* is odd. Then n = 2k + 1 for some $k \in \mathbb{Z}$. Therefore

$$3n + 2 = 3(2k + 1) + 2$$
$$= (6k + 3) + 1 + 1$$
$$= (6k + 4) + 1$$
$$= 2(3k + 2) + 1,$$

and hence 3n + 2 is odd.

2. (1.8) #16

Prove that for any $a, b, c \in \mathbb{R}$, with $a \neq 0$, that there exists a unique $x \in \mathbb{R}$ satisfying the equation

$$ax + b = c$$
.

Proof:

We prove separately (1) existence and (2) uniqueness of x satisfying the above equation.

(1) Let x = (c - b)/a. Then

$$ax + b = a\left(\frac{c-b}{a}\right) + b = (c-b) + b = c$$

showing that at least one solution exists.

(2) Suppose that both x_1 and x_2 satisfy the above equation. Then both

$$ax_1 + b = c$$
 and $ax_2 + b = c$

Thus $ax_1 + b = ax_2 + b$, whence $ax_1 = ax_2$, and therefore $x_1 = x_2$, showing that the solution is unique.

3. <u>(2.1) #22</u>

Prove or disprove: for any sets A and B, if $\mathbb{P}(A) = \mathbb{P}(B)$, then A = B.

Solution:

The statement is **true**, as we now prove.

Proof:

Let *A* and *B* be sets, and assume $\mathbb{P}(A) = \mathbb{P}(B)$. Let $x \in A$. Then $\{x\} \subseteq A$, and hence $\{x\} \in \mathbb{P}(A)$. Since $\mathbb{P}(A) = \mathbb{P}(B)$, we have $\{x\} \in \mathbb{P}(B)$, hence $\{x\} \subseteq B$, and $x \in B$. We've shown $x \in A \rightarrow x \in B$. Repeating the same argument with *A* and *B* interchanged gives $x \in B \rightarrow x \in A$. Therefore $x \in A \leftrightarrow x \in B$, which proves that A = B.