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Midterm 1 Review 

Solutions to Selected Problems 
 

3. The 𝑛th harmonic number is defined to be 𝐻𝑛 = ∑ (
1

𝑘
)𝑛

𝑘=1 .  Use induction to prove that 

 

∑ 𝐻𝑘

𝑛

𝑘=1

= (𝑛 + 1)𝐻𝑛 − 𝑛 

 

for all 𝑛 ≥ 1.  (Hint:  Use the fact that 𝐻𝑛 = 𝐻𝑛−1 +
1

𝑛
.) 

 

Proof: 

I. If 𝑛 = 1, then 𝐻1 = 1 and ∑ 𝐻𝑘
1
𝑘=1 = 1 = 2 − 1 = (1 + 1) ⋅ 1 − 1 = (1 + 1)𝐻1 − 1, so the base case 

is satisfied. 

 

II. Let 𝑛 > 1 be chosen arbitrarily, and assume ∑ 𝐻𝑘
𝑛−1
𝑘=1 = ((𝑛 − 1) + 1)𝐻𝑛−1 − (𝑛 − 1).  We must 

show that ∑ 𝐻𝑘
𝑛
𝑘=1 = (𝑛 + 1)𝐻𝑛 − 𝑛 .  We have 

 

∑ 𝐻𝑘

𝑛

𝑘=1

= ∑ 𝐻𝑘

𝑛−1

𝑘=1

 +  𝐻𝑛 

 

             = ((𝑛 − 1) + 1)𝐻𝑛−1 − (𝑛 − 1) + 𝐻𝑛 by the induction hypothesis 

 

             = 𝑛𝐻𝑛−1 − 𝑛 + 1 + 𝐻𝑛 

 

             = 𝑛𝐻𝑛 − 𝑛𝐻𝑛 + 𝑛𝐻𝑛−1 − 𝑛 + 1 + 𝐻𝑛 

 

             = (𝑛 + 1)𝐻𝑛 − 𝑛 + 1 − 𝑛(𝐻𝑛 − 𝐻𝑛−1) 

 

             = (𝑛 + 1)𝐻𝑛 − 𝑛 + 1 − 𝑛 (
1

𝑛
)  by the definition of 𝐻𝑛 

 

             = (𝑛 + 1)𝐻𝑛 − 𝑛, 

 

as required.  If follows that ∑ 𝐻𝑘
𝑛
𝑘=1 = (𝑛 + 1)𝐻𝑛 − 𝑛 for all 𝑛 ≥ 1.                                            ■ 

 

4. Define the sequence 𝑇(𝑛) for 𝑛 ≥ 1 by the recurrence 𝑇(𝑛) = (𝑛 − 1) +
𝑛−1

𝑛2
⋅ ∑ 𝑇(𝑘)𝑛−1

𝑘=1 .  Use induction 

to prove 𝑇(𝑛) ≤ 2𝑛 for all 𝑛 ≥ 1.   

 

Proof: 

I. Observe 𝑇(1) = (1 − 1) +
1−1

12 ⋅ (empty sum) = 0 ≤ 2 = 2 ⋅ 1, establishing the base case. 

 

II. Let 𝑛 > 1, and assume for all 𝑘 in the range 1 ≤ 𝑘 < 𝑛 that 𝑇(𝑘) ≤ 2𝑘.  We must show that the 

inequality 𝑇(𝑛) ≤ 2𝑛 is also true.  We have 

 

𝑇(𝑛) = (𝑛 − 1) +
𝑛−1

𝑛2 ⋅ ∑ 𝑇(𝑘)𝑛−1
𝑘=1   



 

         ≤ (𝑛 − 1) +
𝑛−1

𝑛2
⋅ ∑ 2𝑘𝑛−1

𝑘=1  by the induction hypothesis 

 

         = (𝑛 − 1) +
𝑛−1

𝑛2
⋅ 2 ⋅

𝑛(𝑛−1)

2
  

 

         = (𝑛 − 1) +
(𝑛−1)2

𝑛
  

 

         = (𝑛 − 1) (1 +
𝑛−1

𝑛
)  

 

         = (𝑛 − 1) (1 + 1 −
1

𝑛
)  

 

         = (𝑛 − 1) (2 −
1

𝑛
)  

 

         = 2𝑛 − 2 − 1 +
1

𝑛
  

 

         = 2𝑛 − 3 +
1

𝑛
 ≤  2𝑛 (since 𝑛 > 1 ⇒

1

𝑛
≤ 1 ⇒  −3 +

1

𝑛
≤ 0) 

 

as required.  It follows that 𝑇(𝑛) ≤ 2𝑛 for all 𝑛 ≥ 1.                                                                     ■ 

 

5. Let 𝑇(𝑛) satisfy the recurrence 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑓(𝑛), where 𝑎 ≥ 1, 𝑏 > 1 and 𝑓(𝑛) is a polynomial 

satisfying deg(𝑓) > log𝑏(𝑎).  Prove that case (3) of the Master Theorem applies, and in particular, prove 

that the regularity condition necessarily holds. 

 

Proof:   

Let 𝑑 = deg(𝑓) and replace 𝑓(𝑛) by the asymptotically equivalent function 𝑛𝑑.  We compare the 

polynomials 𝑛𝑑 and 𝑛log𝑏(𝑎).  Let 𝜖 = 𝑑 − log𝑏(𝑎), which is positive since 𝑑 > log𝑏(𝑎).  Therfore 𝑑 =

log𝑏(𝑎) + 𝜖, and 𝑛𝑑 = Ω(𝑛𝑑) = Ω(𝑛log𝑏(𝑎)+𝜖), verifying the first hypothesis of case (3).   

 

Observe  𝑑 > log𝑏(𝑎)  ⇒   𝑏𝑑 > 𝑎 ⇒  𝑎/𝑏𝑑 < 1.  Pick any c in the range 𝑎/𝑏𝑑 ≤ 𝑐 < 1.  Then for any 

𝑛 ≥ 1, we have 𝑎(𝑛/𝑏)𝑑 = (𝑎/𝑏𝑑)𝑛𝑑 ≤ 𝑐𝑛𝑑, verifying the regularity condition.                                     ■ 

 

6. Define 𝑇(𝑛) by the recurrence 

 

𝑇(𝑛) = {
  0      𝑛 = 1
  2𝑇(⌊𝑛/2⌋) + 𝑛 lg (𝑛)      𝑛 ≥ 2

 

 

Here lg means log2. 
 

a. Show that the Master Theorem cannot be applied to this recurrence. 

 

Proof:   

We first simplify the recurrence to 𝑇(𝑛) = 2𝑇(𝑛/2) + 𝑛 lg(𝑛).  Comparing 𝑛 lg (𝑛) to 𝑛log2(2) = 𝑛, 

we see that 
𝑛 lg(𝑛)

𝑛
= lg(𝑛) ⟶ ∞ as 𝑛 → ∞, so that 𝑛 lg(𝑛) = 𝜔(𝑛).  Since 𝑛 lg(𝑛) is the winner, the 

only possible case of the Master Theorem that could apply is case 3.  But although 𝑛 lg(𝑛) is the winner, 

it does not win by a polynomial factor.  Indeed, let 𝜖 > 0 be chosen arbitrarily.  Then 



 
𝑛 lg (𝑛)

𝑛log2(2)+𝜖 =
𝑛 lg (𝑛)

𝑛1+𝜖 =
lg(𝑛)

𝑛𝜖  ⟶ 0  as  𝑛 → ∞, 

 

which yeilds 𝑛 lg(𝑛) = 𝑜(𝑛log2(2)+𝜖).  Exercise 6 on page 5 of the handout on asymptotic growth rates 

implies 𝑜(𝑛log2(2)+𝜖) ∩ Ω(𝑛log2(2)+𝜖) = ∅, and hence 𝑛 lg(𝑛) ∉ Ω(𝑛log2(2)+𝜖).  Since 𝜖 > 0 was 

arbitrary, this holds for all such 𝜖.  Therefore we are not in case 3, and the Master Theorem cannot be 

applied.                                                                                                                                                    ■ 

 

b. Use the Substitution method to prove that 𝑇(𝑛) = 𝑂(𝑛 (lg 𝑛)2).   

 

Proof:   

We show by induction that 𝑇(𝑛) ≤ 𝑛(lg 𝑛)2 for all 𝑛 ≥ 1, from which 𝑇(𝑛) = 𝑂(𝑛 (lg 𝑛)2) follows. 

 

I. For 𝑛 = 1 we have 𝑇(1) = 0 ≤ 0 = 1 ⋅ (lg 1)2, and the base case is satisfied. 

 

II. Let 𝑛 > 1 be arbitrary, and assume 𝑇(𝑘) ≤ 𝑘(lg 𝑘)2 for any 𝑘 in the range 1 ≤ 𝑘 < 𝑛.  We must 

show that 𝑇(𝑛) ≤ 𝑛(lg 𝑛)2.   

 

𝑇(𝑛) = 2𝑇(⌊𝑛/2⌋) + 𝑛 lg (𝑛) 

 

           ≤ 2 ⋅ ⌊𝑛/2⌋(lg⌊𝑛/2⌋)2 + 𝑛 lg(𝑛) By the induction hypothesis with 𝑘 = ⌊𝑛/2⌋.   
 

           ≤ 2 ⋅ (𝑛/2)(lg(𝑛/2))2 + 𝑛 lg(𝑛) Since ⌊𝑥⌋ ≤ 𝑥 for any 𝑥 ∈ ℝ 

 

           = 𝑛(lg(𝑛) − 1)2 + 𝑛 lg(𝑛) 

 

           = 𝑛((lg(𝑛))2 − 2 lg(𝑛) + 1) + 𝑛 lg(𝑛) 

 

           = 𝑛(lg 𝑛)2 − 2𝑛 lg(𝑛) + 𝑛 + 𝑛 lg(𝑛) 

 

           = 𝑛(lg 𝑛)2 − 𝑛 lg(𝑛) + 𝑛 

 

          ≤  𝑛(lg 𝑛)2 

 

The last inequality follows from  

 

𝑛 > 1  ⇒   𝑛 ≥ 2  ⇒  lg(𝑛) ≥ 1 ⇒  𝑛 lg(𝑛) ≥ 𝑛 ⇒   −𝑛 lg(𝑛) + 𝑛 ≤ 0. 

 

Therefore 𝑇(𝑛) ≤ 𝑛(lg 𝑛)2 for all 𝑛 ≥ 1 by the 2nd PMI.                                                                     ■ 

 

 


