CSE 102

Midterm 1 Review

Solutions to Selected Problems

3. The $n^{\text {th }}$ harmonic number is defined to be $H_{n}=\sum_{k=1}^{n}\left(\frac{1}{k}\right)$. Use induction to prove that

$$
\sum_{k=1}^{n} H_{k}=(n+1) H_{n}-n
$$

for all $n \geq 1$. (Hint: Use the fact that $H_{n}=H_{n-1}+\frac{1}{n}$.)

Proof:

I. If $n=1$, then $H_{1}=1$ and $\sum_{k=1}^{1} H_{k}=1=2-1=(1+1) \cdot 1-1=(1+1) H_{1}-1$, so the base case is satisfied.
II. Let $n>1$ be chosen arbitrarily, and assume $\sum_{k=1}^{n-1} H_{k}=((n-1)+1) H_{n-1}-(n-1)$. We must show that $\sum_{k=1}^{n} H_{k}=(n+1) H_{n}-n$. We have

$$
\begin{array}{rlr}
\sum_{k=1}^{n} H_{k} & =\sum_{k=1}^{n-1} H_{k}+H_{n} \\
& =((n-1)+1) H_{n-1}-(n-1)+H_{n} \quad \text { by the induction hypothesis } \\
& =n H_{n-1}-n+1+H_{n} \\
& =n H_{n}-n H_{n}+n H_{n-1}-n+1+H_{n} \\
& =(n+1) H_{n}-n+1-n\left(H_{n}-H_{n-1}\right) \\
& =(n+1) H_{n}-n+1-n\left(\frac{1}{n}\right) \quad \text { by the definition of } H_{n} \\
& =(n+1) H_{n}-n,
\end{array}
$$

as required. If follows that $\sum_{k=1}^{n} H_{k}=(n+1) H_{n}-n$ for all $n \geq 1$.
4. Define the sequence $T(n)$ for $n \geq 1$ by the recurrence $T(n)=(n-1)+\frac{n-1}{n^{2}} \cdot \sum_{k=1}^{n-1} T(k)$. Use induction to prove $T(n) \leq 2 n$ for all $n \geq 1$.

Proof:

I. Observe $T(1)=(1-1)+\frac{1-1}{1^{2}} \cdot($ empty sum $)=0 \leq 2=2 \cdot 1$, establishing the base case.
II. Let $n>1$, and assume for all k in the range $1 \leq k<n$ that $T(k) \leq 2 k$. We must show that the inequality $T(n) \leq 2 n$ is also true. We have

$$
T(n)=(n-1)+\frac{n-1}{n^{2}} \cdot \sum_{k=1}^{n-1} T(k)
$$

$$
\begin{aligned}
& \leq(n-1)+\frac{n-1}{n^{2}} \cdot \sum_{k=1}^{n-1} 2 k \quad \text { by the induction hypothesis } \\
& =(n-1)+\frac{n-1}{n^{2}} \cdot 2 \cdot \frac{n(n-1)}{2} \\
& =(n-1)+\frac{(n-1)^{2}}{n} \\
& =(n-1)\left(1+\frac{n-1}{n}\right) \\
& =(n-1)\left(1+1-\frac{1}{n}\right) \\
& =(n-1)\left(2-\frac{1}{n}\right) \\
& =2 n-2-1+\frac{1}{n} \quad\left(\text { since } n>1 \Rightarrow \frac{1}{n} \leq 1 \Rightarrow-3+\frac{1}{n} \leq 0\right)
\end{aligned}
$$

as required. It follows that $T(n) \leq 2 n$ for all $n \geq 1$.
5. Let $T(n)$ satisfy the recurrence $T(n)=a T(n / b)+f(n)$, where $a \geq 1, b>1$ and $f(n)$ is a polynomial satisfying $\operatorname{deg}(f)>\log _{b}(a)$. Prove that case (3) of the Master Theorem applies, and in particular, prove that the regularity condition necessarily holds.

Proof:

Let $d=\operatorname{deg}(f)$ and replace $f(n)$ by the asymptotically equivalent function n^{d}. We compare the polynomials n^{d} and $n^{\log _{b}(a)}$. Let $\epsilon=d-\log _{b}(a)$, which is positive since $d>\log _{b}(a)$. Therfore $d=$ $\log _{b}(a)+\epsilon$, and $n^{d}=\Omega\left(n^{d}\right)=\Omega\left(n^{\log _{b}(a)+\epsilon}\right)$, verifying the first hypothesis of case (3).

Observe $d>\log _{b}(a) \Rightarrow b^{d}>a \Rightarrow a / b^{d}<1$. Pick any c in the range $a / b^{d} \leq c<1$. Then for any $n \geq 1$, we have $a(n / b)^{d}=\left(a / b^{d}\right) n^{d} \leq c n^{d}$, verifying the regularity condition.
6. Define $T(n)$ by the recurrence

$$
T(n)= \begin{cases}0 & n=1 \\ 2 T(\lfloor n / 2\rfloor)+n \lg (n) & n \geq 2\end{cases}
$$

Here lg means $\log _{2}$.
a. Show that the Master Theorem cannot be applied to this recurrence.

Proof:

We first simplify the recurrence to $T(n)=2 T(n / 2)+n \lg (n)$. Comparing $n \lg (n)$ to $n^{\log _{2}(2)}=n$, we see that $\frac{n \lg (n)}{n}=\lg (n) \rightarrow \infty$ as $n \rightarrow \infty$, so that $n \lg (n)=\omega(n)$. Since $n \lg (n)$ is the winner, the only possible case of the Master Theorem that could apply is case 3. But although $n \lg (n)$ is the winner, it does not win by a polynomial factor. Indeed, let $\epsilon>0$ be chosen arbitrarily. Then

$$
\frac{n \lg (n)}{n^{\log _{2}(2)+\epsilon}}=\frac{n \lg (n)}{n^{1+\epsilon}}=\frac{\lg (n)}{n^{\epsilon}} \rightarrow 0 \text { as } n \rightarrow \infty,
$$

which yeilds $n \lg (n)=o\left(n^{\log _{2}(2)+\epsilon}\right)$. Exercise 6 on page 5 of the handout on asymptotic growth rates implies $o\left(n^{\log _{2}(2)+\epsilon}\right) \cap \Omega\left(n^{\log _{2}(2)+\epsilon}\right)=\emptyset$, and hence $n \lg (n) \notin \Omega\left(n^{\log _{2}(2)+\epsilon}\right)$. Since $\epsilon>0$ was arbitrary, this holds for all such ϵ. Therefore we are not in case 3, and the Master Theorem cannot be applied.
b. Use the Substitution method to prove that $T(n)=O\left(n(\lg n)^{2}\right)$.

Proof:

We show by induction that $T(n) \leq n(\lg n)^{2}$ for all $n \geq 1$, from which $T(n)=O\left(n(\lg n)^{2}\right)$ follows.
I. For $n=1$ we have $T(1)=0 \leq 0=1 \cdot(\lg 1)^{2}$, and the base case is satisfied.
II. Let $n>1$ be arbitrary, and assume $T(k) \leq k(\lg k)^{2}$ for any k in the range $1 \leq k<n$. We must show that $T(n) \leq n(\lg n)^{2}$.

$$
\begin{aligned}
T(n) & =2 T(\lfloor n / 2\rfloor)+n \lg (n) \\
& \leq 2 \cdot\lfloor n / 2\rfloor(\lg \lfloor n / 2\rfloor)^{2}+n \lg (n) \quad \text { By the induction hypothesis with } k=\lfloor n / 2\rfloor . \\
& \leq 2 \cdot(n / 2)(\lg (n / 2))^{2}+n \lg (n) \quad \text { Since }\lfloor x\rfloor \leq x \text { for any } x \in \mathbb{R} \\
& =n(\lg (n)-1)^{2}+n \lg (n) \\
& =n\left((\lg (n))^{2}-2 \lg (n)+1\right)+n \lg (n) \\
& =n(\lg n)^{2}-2 n \lg (n)+n+n \lg (n) \\
& =n(\lg n)^{2}-n \lg (n)+n \\
& \leq n(\lg n)^{2}
\end{aligned}
$$

The last inequality follows from

$$
n>1 \Rightarrow n \geq 2 \Rightarrow \lg (n) \geq 1 \Rightarrow n \lg (n) \geq n \Rightarrow-n \lg (n)+n \leq 0
$$

Therefore $T(n) \leq n(\lg n)^{2}$ for all $n \geq 1$ by the $2^{\text {nd }}$ PMI.

