CSE 102 Midterm 1 Review Problems

- 1. Let a, b be real numbers, with b > 0. Prove that $(n + a)^b = \Theta(n^b)$.
- 2. Prove that $o(g(n)) \cap \Omega(g(n)) = \emptyset$ by verifying that no function can belong to both o(g(n)) and $\Omega(g(n))$.
- 3. The *n*th harmonic number is defined to be $H_n = \sum_{k=1}^n \left(\frac{1}{k}\right) = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} + \frac{1}{n}$. Use induction to prove that

$$\sum_{k=1}^{n} H_k = (n+1)H_n - n$$

for all $n \ge 1$. (Hint: Use the fact that $H_n = H_{n-1} + \frac{1}{n}$.)

- 4. Define the sequence T(n) for $n \ge 1$ by the recurrence $T(n) = (n-1) + \frac{n-1}{n^2} \cdot \sum_{k=1}^{n-1} T(k)$. Use induction to prove $T(n) \le 2n$ for all $n \ge 1$.
- 5. Let T(n) satisfy the recurrence T(n) = aT(n/b) + f(n), where $a \ge 1$, b > 1 and f(n) is a polynomial satisfying deg $(f) > \log_b(a)$. Prove that case (3) of the Master Theorem applies, and in particular, prove that the regularity condition necessarily holds.
- 6. Define T(n) by the recurrence

$$T(n) = \begin{cases} 0 & n = 1\\ 2T(\lfloor n/2 \rfloor) + n \lg (n) & n \ge 2 \end{cases}$$

Here $\log \max \log_2$.

- a. Show that the Master Theorem cannot be applied to this recurrence.
- b. Use the Substitution method to prove that $T(n) = O(n (\lg n)^2)$.