CSE 102 Spring 2024 Midterm Exam 1 Solutions

1. (20 Points) Prove that if $h_1(n) = \Theta(f(n))$ and $h_2(n) = \Theta(g(n))$, then $h_1(n)h_2(n) = \Theta(f(n)g(n))$.

Proof:

We have:

∃ positive a_1, b_1, n_1 such that $\forall n \ge n_1$: $0 \le a_1 f(n) \le h_1(n) \le b_1 f(n)$ ∃ positive a_2, b_2, n_2 such that $\forall n \ge n_2$: $0 \le a_2 g(n) \le h_2(n) \le b_2 g(n)$

Define $a = a_1a_2$, $b = b_1b_2$ and $n_0 = \max(n_1, n_2)$. Then a, b and n_0 are positive. If $n \ge n_0$, then both of the above inqualities are true. Upon multiplying these inequalities, we get

 \exists positive a, b, n_0 such that $\forall n \ge n_0$: $0 \le af(n)g(n) \le h_1(n)h_2(n) \le bf(n)g(n)$

showing that $h_1(n)h_2(n) = \Theta(f(n)g(n))$.

Note to graders:

It is wrong to conclude that since $h_1(n) = \Theta(f(n))$, then the limit $\lim_{n \to \infty} h_1(n)/f(n)$ exists and is a positive real number, and similarly for $h_2(n)$ and g(n). Anyone doing this should not receive full credit.

2. (20 Points) Use Stirling's formula to prove that $\frac{(3n)!}{(n!)^3} = \Theta\left(\frac{27^n}{n}\right)$. **Proof:**

$$\frac{(3n)!}{(n!)^3} = \frac{\sqrt{2\pi \cdot 3n} \cdot \left(\frac{3n}{e}\right)^{3n} \cdot \left(1 + \Theta\left(\frac{1}{3n}\right)\right)}{\left(\sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \cdot \left(1 + \Theta\left(\frac{1}{n}\right)\right)\right)^3}$$
$$= \frac{\sqrt{3}}{2\pi} \cdot \frac{1}{n} \cdot \frac{3^{3n} \cdot n^{3n} \cdot e^{-3n}}{n^{3n} \cdot e^{-3n}} \cdot \frac{\left(1 + \Theta\left(\frac{1}{3n}\right)\right)}{\left(1 + \Theta\left(\frac{1}{n}\right)\right)^3}$$

$$=\frac{\sqrt{3}}{2\pi}\cdot\frac{27^n}{n}\cdot\frac{\left(1+\Theta\left(\frac{1}{3n}\right)\right)}{\left(1+\Theta\left(\frac{1}{n}\right)\right)^3}$$

Therefore

$$\frac{\frac{(3n)!}{(n!)^3}}{\frac{27^n}{n}} = \frac{\sqrt{3}}{2\pi} \cdot \frac{\left(1 + \Theta\left(\frac{1}{3n}\right)\right)}{\left(1 + \Theta\left(\frac{1}{n}\right)\right)^3} \to \frac{\sqrt{3}}{2\pi} \text{ as } n \to \infty$$

Since $0 < \sqrt{3}/2\pi < \infty$, it follows that $\frac{(3n)!}{(n!)^3} = \Theta\left(\frac{27^n}{n}\right)$.

3. (20 Points) The n^{th} harmonic number is defined to be he sum $H_n = \sum_{k=1}^n \left(\frac{1}{k}\right)$. Use induction to prove that for all $n \ge 1$:

$$\sum_{k=1}^{n} H_k = (n+1)H_n - n$$

(Hint: Use the fact that H_n satisfies the recurrence relation $H_n = H_{n-1} + \frac{1}{n}$.)

Proof: (We use weak induction form IIb)

- I. If n = 1, then $H_1 = 1$ and $\sum_{k=1}^{1} H_k = 1 = 2 1 = (1 + 1) \cdot 1 1 = (1 + 1)H_1 1$, so the base case is satisfied.
- II. Let n > 1 be chosen arbitrarily, and assume $\sum_{k=1}^{n-1} H_k = ((n-1)+1)H_{n-1} (n-1)$. We must show that $\sum_{k=1}^n H_k = (n+1)H_n n$. We have

$$\sum_{k=1}^{n} H_{k} = \sum_{k=1}^{n-1} H_{k} + H_{n}$$

= $((n-1)+1)H_{n-1} - (n-1) + H_{n}$ by the induction hypothesis
= $nH_{n-1} - n + 1 + H_{n}$
= $n(H_{n} - \frac{1}{n}) - n + 1 + H_{n}$ since $H_{n-1} = H_{n} - \frac{1}{n}$ by the recurrence
= $nH_{n} - 1 - n + 1 + H_{n}$
= $(n+1)H_{n} - n$,

as required. If follows that $\sum_{k=1}^{n} H_k = (n+1)H_n - n$ for all $n \ge 1$.

4. (20 Points) Define T(n) by the recurrence

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 4T(\lfloor n/2 \rfloor) + 2n^2 & \text{if } n \ge 2 \end{cases}$$

a. (10 Points) Determine c > 0 such that $T(n) \le cn^2 \lg(n)$ for all $n \ge 1$, hence $T(n) = O(n^2 \log(n))$.

Solution:

Let c = 2. We show by induction that $\forall n \ge 1$: $T(n) \le 2n^2 \lg(n)$, from which $T(n) = O(n^2 \log(n))$ follows.

- I. For n = 1 we have $T(1) = 0 \le 0 = 2 \cdot 1^2 \lg(1)$, establishing the base case
- II. Let n > 1 be chosen arbitrarily, and assume $T(k) \le 2k^2 \lg(k)$ for k in the range $1 \le k < n$. We must show that $T(n) \le 2n^2 \lg(n)$. Then

$$T(n) = 4T\left(\left\lfloor\frac{n}{2}\right\rfloor\right) + 2n^{2} \qquad \text{by the definition of } T(n)$$

$$\leq 4 \cdot 2\left\lfloor\frac{n}{2}\right\rfloor^{2} \lg\left\lfloor\frac{n}{2}\right\rfloor + 2n^{2} \qquad \text{by the induction hypothesis with } k = \lfloor n/2 \rfloor$$

$$\leq 8\left(\frac{n}{2}\right)^{2} \lg\left(\frac{n}{2}\right) + 2n^{2} \qquad \text{since } \lfloor x \rfloor \leq x \text{ for any } x \in \mathbb{R}$$

$$= 2n^{2}(\lg(n) - 1) + 2n^{2}$$

$$= 2n^{2} \lg(n) - 2n^{2} + 2n^{2}$$

$$= 2n^{2} \lg(n)$$

The result follows for all $n \ge 1$ by the 2nd PMI.

b. (10 Points) Use the Master Theorem to find a tight asymptotic bound for T(n).

Solution:

Simplifying as appropriate for the Master Theorem gives $T(n) = 4T(n/2) + n^2$. We compare n^2 to $n^{\log_2(4)} = n^2$. Case 2 yields $T(n) = \Theta(n^2 \log(n))$.

5. (20 Points) Use the Master Theorem to find a tight asymptotic bound for the solution to the following recurrence relation.

$$T(n) = 25 T(n/3) + n^3$$

Solution:

We compare n^3 to $n^{\log_3(25)}$. Since $25 < 27 = 3^3$ we have $\log_3(25) < 3$. Let $\epsilon = 3 - \log_3(25)$. Then $\epsilon > 0$ and $3 = \log_3(25) + \epsilon$. Therefore $n^3 = \Omega(n^3) = \Omega(n^{\log_3(25) + \epsilon})$, putting us in case 3. To establish the regularity condition, choose any *c* in the range $\frac{25}{27} \le c < 1$. Then for any $n \ge 1$ we have

$$25\left(\frac{n}{3}\right)^3 = \frac{25}{27} \cdot n^3 \le cn^3.$$

It now follows from case 3 of the Master Theorem that $T(n) = \Theta(n^3)$.