
CSE 102 
Spring 2024 
Midterm Exam 1                   Solutions 
 
1. (20 Points) Prove that if ℎ1(𝑛𝑛) = Θ�𝑓𝑓(𝑛𝑛)� and ℎ2(𝑛𝑛) = Θ�𝑔𝑔(𝑛𝑛)�, then ℎ1(𝑛𝑛)ℎ2(𝑛𝑛) = Θ�𝑓𝑓(𝑛𝑛)𝑔𝑔(𝑛𝑛)�. 

 
Proof: 
We have: 
 

∃ positive 𝑎𝑎1,𝑏𝑏1, 𝑛𝑛1 such that ∀𝑛𝑛 ≥ 𝑛𝑛1:  0 ≤ 𝑎𝑎1𝑓𝑓(𝑛𝑛) ≤ ℎ1(𝑛𝑛) ≤ 𝑏𝑏1𝑓𝑓(𝑛𝑛) 
∃ positive 𝑎𝑎2,𝑏𝑏2, 𝑛𝑛2 such that ∀𝑛𝑛 ≥ 𝑛𝑛2:  0 ≤ 𝑎𝑎2𝑔𝑔(𝑛𝑛) ≤ ℎ2(𝑛𝑛) ≤ 𝑏𝑏2𝑔𝑔(𝑛𝑛) 

 
Define 𝑎𝑎 = 𝑎𝑎1𝑎𝑎2, 𝑏𝑏 = 𝑏𝑏1𝑏𝑏2 and 𝑛𝑛0 = max(𝑛𝑛1,𝑛𝑛2).  Then 𝑎𝑎, 𝑏𝑏 and 𝑛𝑛0 are positive.  If 𝑛𝑛 ≥ 𝑛𝑛0, then both of 
the above inqualities are true.  Upon multiplying these inequalities, we get 
 

∃ positive 𝑎𝑎,𝑏𝑏, 𝑛𝑛0 such that ∀𝑛𝑛 ≥ 𝑛𝑛0:  0 ≤ 𝑎𝑎𝑓𝑓(𝑛𝑛)𝑔𝑔(𝑛𝑛) ≤ ℎ1(𝑛𝑛)ℎ2(𝑛𝑛) ≤ 𝑏𝑏𝑓𝑓(𝑛𝑛)𝑔𝑔(𝑛𝑛) 
 
showing that ℎ1(𝑛𝑛)ℎ2(𝑛𝑛) = Θ�𝑓𝑓(𝑛𝑛)𝑔𝑔(𝑛𝑛)�.                                                                                                  ■ 
 
 
Note to graders: 
It is wrong to conclude that since ℎ1(𝑛𝑛) = Θ�𝑓𝑓(𝑛𝑛)�, then the limit lim

𝑛𝑛→∞
ℎ1(𝑛𝑛)/𝑓𝑓(𝑛𝑛) exists and is a positive 

real number,  and similarly for ℎ2(𝑛𝑛) and 𝑔𝑔(𝑛𝑛).  Anyone doing this should not receive full credit.                 ■ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
2. (20 Points) Use Stirling's formula to prove that (3𝑛𝑛)!
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Therefore  
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Since 0 < √3/2𝜋𝜋 < ∞, it follows that (3𝑛𝑛)!
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�.                                                                                ■ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3. (20 Points) The 𝑛𝑛th harmonic number is defined to be he sum 𝐻𝐻𝑛𝑛 = ∑ �1
𝑘𝑘
�𝑛𝑛

𝑘𝑘=1 .  Use induction to prove that 
for all 𝑛𝑛 ≥ 1: 

�𝐻𝐻𝑘𝑘

𝑛𝑛

𝑘𝑘=1

= (𝑛𝑛 + 1)𝐻𝐻𝑛𝑛 − 𝑛𝑛 

 
(Hint:  Use the fact that 𝐻𝐻𝑛𝑛 satisfies the recurrence relation 𝐻𝐻𝑛𝑛 = 𝐻𝐻𝑛𝑛−1 + 1

𝑛𝑛
.) 

 
Proof: (We use weak induction form IIb) 
 
I. If 𝑛𝑛 = 1, then 𝐻𝐻1 = 1 and ∑ 𝐻𝐻𝑘𝑘1

𝑘𝑘=1 = 1 = 2 − 1 = (1 + 1) ⋅ 1 − 1 = (1 + 1)𝐻𝐻1 − 1, so the base case 
is satisfied. 
 

II. Let 𝑛𝑛 > 1 be chosen arbitrarily, and assume ∑ 𝐻𝐻𝑘𝑘𝑛𝑛−1
𝑘𝑘=1 = ((𝑛𝑛 − 1) + 1)𝐻𝐻𝑛𝑛−1 − (𝑛𝑛 − 1).  We must 

show that ∑ 𝐻𝐻𝑘𝑘𝑛𝑛
𝑘𝑘=1 = (𝑛𝑛 + 1)𝐻𝐻𝑛𝑛 − 𝑛𝑛 .  We have 
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 + 𝐻𝐻𝑛𝑛 

 
             = �(𝑛𝑛 − 1) + 1�𝐻𝐻𝑛𝑛−1 − (𝑛𝑛 − 1) + 𝐻𝐻𝑛𝑛 by the induction hypothesis 
 
             = 𝑛𝑛𝐻𝐻𝑛𝑛−1 − 𝑛𝑛 + 1 + 𝐻𝐻𝑛𝑛 
 
             = 𝑛𝑛 �𝐻𝐻𝑛𝑛 −

1
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� − 𝑛𝑛 + 1 + 𝐻𝐻𝑛𝑛        since 𝐻𝐻𝑛𝑛−1 = 𝐻𝐻𝑛𝑛 −

1
𝑛𝑛
  by the recurrence 

 
             = 𝑛𝑛𝐻𝐻𝑛𝑛 − 1− 𝑛𝑛 + 1 + 𝐻𝐻𝑛𝑛 
 
             = (𝑛𝑛 + 1)𝐻𝐻𝑛𝑛 − 𝑛𝑛,  

 
as required.  If follows that  ∑ 𝐻𝐻𝑘𝑘𝑛𝑛

𝑘𝑘=1 = (𝑛𝑛 + 1)𝐻𝐻𝑛𝑛 − 𝑛𝑛  for all 𝑛𝑛 ≥ 1.                                            ■ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4. (20 Points) Define 𝑇𝑇(𝑛𝑛) by the recurrence 
 

𝑇𝑇(𝑛𝑛) = � 0 if 𝑛𝑛 = 1
 4𝑇𝑇(⌊𝑛𝑛/2⌋) + 2𝑛𝑛2 if 𝑛𝑛 ≥ 2 

 
a. (10 Points) Determine 𝑐𝑐 > 0 such that 𝑇𝑇(𝑛𝑛) ≤ 𝑐𝑐𝑛𝑛2lg(𝑛𝑛) for all 𝑛𝑛 ≥ 1, hence 𝑇𝑇(𝑛𝑛) = 𝑂𝑂(𝑛𝑛2 log(𝑛𝑛)). 

 
Solution:  
Let 𝑐𝑐 = 2.  We show by induction that ∀𝑛𝑛 ≥ 1:  𝑇𝑇(𝑛𝑛) ≤ 2𝑛𝑛2lg(𝑛𝑛), from which 𝑇𝑇(𝑛𝑛) = 𝑂𝑂(𝑛𝑛2 log(𝑛𝑛)) 
follows. 
 
I. For 𝑛𝑛 = 1 we have 𝑇𝑇(1) = 0 ≤ 0 = 2 ⋅ 12lg (1), establishing the base case 

 
II. Let 𝑛𝑛 > 1 be chosen arbitrarily, and assume 𝑇𝑇(𝑘𝑘) ≤ 2𝑘𝑘2lg (𝑘𝑘) for 𝑘𝑘 in the range 1 ≤ 𝑘𝑘 < 𝑛𝑛.  We 

must show that 𝑇𝑇(𝑛𝑛) ≤ 2𝑛𝑛2lg (𝑛𝑛).  Then 
 

𝑇𝑇(𝑛𝑛) = 4𝑇𝑇 ��𝑛𝑛
2
��+ 2𝑛𝑛2  by the definition of 𝑇𝑇(𝑛𝑛) 
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� + 2𝑛𝑛2 by the induction hypothesis with 𝑘𝑘 = ⌊𝑛𝑛/2⌋ 

 

           ≤ 8 �𝑛𝑛
2
�
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lg �𝑛𝑛
2
�+ 2𝑛𝑛2  since ⌊𝑥𝑥⌋ ≤ 𝑥𝑥 for any 𝑥𝑥 ∈ ℝ 

 
           = 2𝑛𝑛2(lg(𝑛𝑛)− 1) + 2𝑛𝑛2 
 
           = 2𝑛𝑛2 lg(𝑛𝑛)− 2𝑛𝑛2 + 2𝑛𝑛2 
 
           = 2𝑛𝑛2 lg(𝑛𝑛) 

 
The result follows for all 𝑛𝑛 ≥ 1 by the 2nd PMI.                                                                                    ■ 

 
b. (10 Points) Use the Master Theorem to find a tight asymptotic bound for 𝑇𝑇(𝑛𝑛).     

 
Solution:   
Simplifying as appropriate for the Master Theorem gives 𝑇𝑇(𝑛𝑛) = 4𝑇𝑇(𝑛𝑛/2) + 𝑛𝑛2.  We compare 𝑛𝑛2 to 
𝑛𝑛log2(4) = 𝑛𝑛2.  Case 2 yields 𝑇𝑇(𝑛𝑛) = Θ(𝑛𝑛2 log(𝑛𝑛)).                                                                                          ■ 

 
 
 
 
 
 
 
 
 
 
 
 



5. (20 Points) Use the Master Theorem to find a tight asymptotic bound for the solution to the following 
recurrence relation. 
 

𝑇𝑇(𝑛𝑛) = 25 𝑇𝑇(𝑛𝑛/3) + 𝑛𝑛3 
 
Solution:  
We compare 𝑛𝑛3 to 𝑛𝑛log3(25).  Since 25 < 27 = 33 we have log3(25) < 3.  Let 𝜖𝜖 = 3 − log3(25).  Then 
𝜖𝜖 > 0 and 3 = log3(25) + 𝜖𝜖.  Therefore 𝑛𝑛3 = Ω(𝑛𝑛3) = Ω�𝑛𝑛log3(25)+𝜖𝜖�, putting us in case 3.  To establish 
the regularity condition, choose any 𝑐𝑐 in the range 25

27
≤ 𝑐𝑐 < 1.  Then for any 𝑛𝑛 ≥ 1 we have 

 

25 �
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3
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3 ≤ 𝑐𝑐𝑛𝑛3. 
 
It now follows from case 3 of the Master Theorem that 𝑇𝑇(𝑛𝑛) = Θ(𝑛𝑛3).                                                           ■ 
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