CSE 102
Spring 2024
Midterm Exam 1

Solutions

1. (20 Points) Prove that if $h_{1}(n)=\Theta(f(n))$ and $h_{2}(n)=\Theta(g(n))$, then $h_{1}(n) h_{2}(n)=\Theta(f(n) g(n))$.

Proof:

We have:
\exists positive a_{1}, b_{1}, n_{1} such that $\forall n \geq n_{1}: 0 \leq a_{1} f(n) \leq h_{1}(n) \leq b_{1} f(n)$
\exists positive a_{2}, b_{2}, n_{2} such that $\forall n \geq n_{2}: 0 \leq a_{2} g(n) \leq h_{2}(n) \leq b_{2} g(n)$
Define $a=a_{1} a_{2}, b=b_{1} b_{2}$ and $n_{0}=\max \left(n_{1}, n_{2}\right)$. Then a, b and n_{0} are positive. If $n \geq n_{0}$, then both of the above inqualities are true. Upon multiplying these inequalities, we get
\exists positive a, b, n_{0} such that $\forall n \geq n_{0}: 0 \leq a f(n) g(n) \leq h_{1}(n) h_{2}(n) \leq b f(n) g(n)$
showing that $h_{1}(n) h_{2}(n)=\Theta(f(n) g(n))$.

Note to graders:

It is wrong to conclude that since $h_{1}(n)=\Theta(f(n))$, then the $\operatorname{limit}^{\lim _{n \rightarrow \infty}} h_{1}(n) / f(n)$ exists and is a positive real number, and similarly for $h_{2}(n)$ and $g(n)$. Anyone doing this should not receive full credit.
2. (20 Points) Use Stirling's formula to prove that $\frac{(3 n)!}{(n!)^{3}}=\Theta\left(\frac{27^{n}}{n}\right)$.

Proof:

$$
\begin{aligned}
\frac{(3 n)!}{(n!)^{3}} & =\frac{\sqrt{2 \pi \cdot 3 n} \cdot\left(\frac{3 n}{e}\right)^{3 n} \cdot\left(1+\Theta\left(\frac{1}{3 n}\right)\right)}{\left(\sqrt{2 \pi n} \cdot\left(\frac{n}{e}\right)^{n} \cdot\left(1+\Theta\left(\frac{1}{n}\right)\right)\right)^{3}} \\
& =\frac{\sqrt{3}}{2 \pi} \cdot \frac{1}{n} \cdot \frac{3^{3 n} \cdot n^{3 n} \cdot e^{-3 n}}{n^{3 n} \cdot e^{-3 n}} \cdot \frac{\left(1+\Theta\left(\frac{1}{3 n}\right)\right)}{\left(1+\Theta\left(\frac{1}{n}\right)\right)^{3}} \\
& =\frac{\sqrt{3}}{2 \pi} \cdot \frac{27^{n}}{n} \cdot \frac{\left(1+\Theta\left(\frac{1}{3 n}\right)\right)}{\left(1+\Theta\left(\frac{1}{n}\right)\right)^{3}}
\end{aligned}
$$

Therefore

$$
\frac{\frac{(3 n)!}{(n!)^{3}}}{\frac{27^{n}}{n}}=\frac{\sqrt{3}}{2 \pi} \cdot \frac{\left(1+\Theta\left(\frac{1}{3 n}\right)\right)}{\left(1+\Theta\left(\frac{1}{n}\right)\right)^{3}} \rightarrow \frac{\sqrt{3}}{2 \pi} \text { as } n \rightarrow \infty
$$

Since $0<\sqrt{3} / 2 \pi<\infty$, it follows that $\frac{(3 n)!}{(n!)^{3}}=\Theta\left(\frac{27^{n}}{n}\right)$.
3. (20 Points) The $n^{\text {th }}$ harmonic number is defined to be he sum $H_{n}=\sum_{k=1}^{n}\left(\frac{1}{k}\right)$. Use induction to prove that for all $n \geq 1$:

$$
\sum_{k=1}^{n} H_{k}=(n+1) H_{n}-n
$$

(Hint: Use the fact that H_{n} satisfies the recurrence relation $H_{n}=H_{n-1}+\frac{1}{n}$.)
Proof: (We use weak induction form IIb)
I. If $n=1$, then $H_{1}=1$ and $\sum_{k=1}^{1} H_{k}=1=2-1=(1+1) \cdot 1-1=(1+1) H_{1}-1$, so the base case is satisfied.
II. Let $n>1$ be chosen arbitrarily, and assume $\sum_{k=1}^{n-1} H_{k}=((n-1)+1) H_{n-1}-(n-1)$. We must show that $\sum_{k=1}^{n} H_{k}=(n+1) H_{n}-n$. We have

$$
\begin{aligned}
\sum_{k=1}^{n} H_{k} & =\sum_{k=1}^{n-1} H_{k}+H_{n} \\
& =((n-1)+1) H_{n-1}-(n-1)+H_{n} \quad \text { by the induction hypothesis } \\
& =n H_{n-1}-n+1+H_{n} \\
& =n\left(H_{n}-\frac{1}{n}\right)-n+1+H_{n} \quad \text { since } H_{n-1}=H_{n}-\frac{1}{n} \text { by the recurrence } \\
& =n H_{n}-1-n+1+H_{n} \\
& =(n+1) H_{n}-n
\end{aligned}
$$

as required. If follows that $\sum_{k=1}^{n} H_{k}=(n+1) H_{n}-n$ for all $n \geq 1$.
4. (20 Points) Define $T(n)$ by the recurrence

$$
T(n)= \begin{cases}0 & \text { if } n=1 \\ 4 T(\lfloor n / 2\rfloor)+2 n^{2} & \text { if } n \geq 2\end{cases}
$$

a. (10 Points) Determine $c>0$ such that $T(n) \leq c n^{2} \lg (n)$ for all $n \geq 1$, hence $T(n)=O\left(n^{2} \log (n)\right)$.

Solution:

Let $c=2$. We show by induction that $\forall n \geq 1: T(n) \leq 2 n^{2} \lg (n)$, from which $T(n)=O\left(n^{2} \log (n)\right)$ follows.
I. For $n=1$ we have $T(1)=0 \leq 0=2 \cdot 1^{2} \lg (1)$, establishing the base case
II. Let $n>1$ be chosen arbitrarily, and assume $T(k) \leq 2 k^{2} \lg (k)$ for k in the range $1 \leq k<n$. We must show that $T(n) \leq 2 n^{2} \lg (n)$. Then

$$
\begin{array}{rlrl}
T(n) & =4 T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+2 n^{2} & & \text { by the definition of } T(n) \\
& \leq 4 \cdot 2\left\lfloor\frac{n}{2}\right\rfloor^{2} \lg \left\lfloor\frac{n}{2}\right\rfloor+2 n^{2} & & \text { by the induction hypothesis with } k=\lfloor n / 2\rfloor \\
& \leq 8\left(\frac{n}{2}\right)^{2} \lg \left(\frac{n}{2}\right)+2 n^{2} & & \text { since }\lfloor x\rfloor \leq x \text { for any } x \in \mathbb{R} \\
& =2 n^{2}(\lg (n)-1)+2 n^{2} & \\
& =2 n^{2} \lg (n)-2 n^{2}+2 n^{2} & \\
& =2 n^{2} \lg (n) &
\end{array}
$$

The result follows for all $n \geq 1$ by the $2^{\text {nd }}$ PMI.
b. (10 Points) Use the Master Theorem to find a tight asymptotic bound for $T(n)$.

Solution:

Simplifying as appropriate for the Master Theorem gives $T(n)=4 T(n / 2)+n^{2}$. We compare n^{2} to $n^{\log _{2}(4)}=n^{2}$. Case 2 yields $T(n)=\Theta\left(n^{2} \log (n)\right)$.
5. (20 Points) Use the Master Theorem to find a tight asymptotic bound for the solution to the following recurrence relation.

$$
T(n)=25 T(n / 3)+n^{3}
$$

Solution:

We compare n^{3} to $n^{\log _{3}(25)}$. Since $25<27=3^{3}$ we have $\log _{3}(25)<3$. Let $\epsilon=3-\log _{3}(25)$. Then $\epsilon>0$ and $3=\log _{3}(25)+\epsilon$. Therefore $n^{3}=\Omega\left(n^{3}\right)=\Omega\left(n^{\log _{3}(25)+\epsilon}\right)$, putting us in case 3 . To establish the regularity condition, choose any c in the range $\frac{25}{27} \leq c<1$. Then for any $n \geq 1$ we have

$$
25\left(\frac{n}{3}\right)^{3}=\frac{25}{27} \cdot n^{3} \leq c n^{3} .
$$

It now follows from case 3 of the Master Theorem that $T(n)=\Theta\left(n^{3}\right)$.

