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CSE 101 

Introduction to Data Structures and Algorithms 

Graph Theory 
 

Graphs 

A graph G consists of an ordered pair of sets 𝐺 = (𝑉, 𝐸) where 𝑉 ≠ ∅, and 𝐸 ⊂ 𝑉(2) = {2-subsets of 𝑉}.  

In other words E consists of unordered pairs of elements of V.  We call 𝑉 = 𝑉(𝐺) the vertex set, and 𝐸 =
𝐸(𝐺) the edge set of G.  In this handout, we consider only graphs in which both the vertex set and edge set 

are finite.  An edge {𝑥, 𝑦},  typically denoted xy or yx, is said to join  its two end vertices x and y, and these 

ends are said to be incident with the edge xy.  Two vertices are called adjacent if they are joined by an edge, 

and two edges are said to be adjacent if they have a common end vertex.  A graph will usually be depicted 

as a collection of points in the plane (vertices), together with line segments (edges) joining the points.  

 

Example 1  𝑉(𝐺) = {1, 2, 3, 4, 5, 6},   𝐸(𝐺) = {12, 14, 23, 24, 25, 26, 35, 36, 45, 56}  
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Two graphs 𝐺1 and 𝐺2 are said to me isomorphic if there exists a bijection 𝜙: 𝑉(𝐺1) → 𝑉(𝐺2) such that for 

any 𝑥, 𝑦 ∈ 𝑉(𝐺1), the pair xy is an edge of 𝐺1 if and only if the pair 𝜙(𝑥)𝜙(𝑦) is an edge of 𝐺2.  In other 

words, the function 𝜙 must preserve all incidence relations amongst the vertices and edges in 𝐺1 .  We write 

𝐺1 ≅ 𝐺2 to mean that 𝐺1 and 𝐺2 are isomorphic.   

 

Example 2  Let 𝐺1 be the graph from the previous example, and define 𝐺2 by 𝑉(𝐺2) = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}, 

𝐸(𝐺2) = {𝑎𝑏, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑, 𝑏𝑒, 𝑏𝑓, 𝑐𝑒, 𝑐𝑓, 𝑑𝑒, 𝑒𝑓}.  𝐺2 can be drawn as  

 

                                                            a                  d  

 

                                                                                c  

 

 

                                                                                f  

                                                          b                                           e  

 

Define a mapping 𝜙: 𝑉(𝐺1) → 𝑉(𝐺2) by 1 → 𝑎, 2 → 𝑏, 3 → 𝑐, 4 → 𝑑, 5 → 𝑒, 6 → 𝑓.  One checks easily 

that 𝜙 is an isomorphism.   

 

Isomorphic graphs are indistinguishable as far as graph theory is concerned.  In fact, graph theory can be 

defined to be the study of those properties of graphs that are preserved by isomorphisms.  Thus a graph is 

not a picture, in spite of the way we visualize it.  Instead, a graph is a combinatorial object consisting of 

two abstract sets, together with some incidence data relating those sets. 
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Notice that our definition of a graph does not allow for the existence of an edge joining a single vertex to 

itself (sometimes called a loop), since an edge 𝑥𝑦 = {𝑥, 𝑦} must be a 2-element subset of V, and therefore 

must have distinct ends. 

 

 

Neither does our definition allow two distinct edges to join the same pair of vertices (parallel edges), since 

the edge set E, being a set of pairs of vertices, cannot contain the same pair twice.   

 

 

 

When these types of edges are allowed, we call the resulting structure a multi-graph.  Some authors use the 

term “graph” to denote what we have designated as a multi-graph.  Those authors would call our notion of 

graph (i.e. a graph in which loops and parallel edges do not occur) a simple graph. 

 

The degree of a vertex 𝑥 ∈ 𝑉(𝐺), denoted deg (𝑥), is the number of edges incident with x, or equivalently, 

the number of vertices adjacent to x.  Referring to Example 1 above, we see that deg(1) = 2, deg(2) = 5 

and deg(6) = 3.  The degree sequence of a graph consists of its vertex degrees arranged in increasing order.  

The graph in Example 1 has degree sequence (2, 3, 3, 3, 4, 5).  Observe that the graph in Example 2 has the 

same degree sequence.  Clearly if 𝜙: 𝑉(𝐺1) → 𝑉(𝐺2) is an isomorphism, then deg(𝜙(𝑥)) = deg (𝑥) for 

any 𝑥 ∈ 𝑉(𝐺), and hence isomorphic graphs must have the same degree sequence.  This is our first example 

of an isomorphism invariant, a graph property that is preserved by isomorphisms. 

 

Observe that  

∑ deg (𝑥)

𝑥∈𝑉(𝐺)

= 2|𝐸(𝐺)| 

 

since each edge, having two distinct ends, contributes 2 to the sum on the left.  This is sometimes known as 

the Handshake Lemma for it says that the number of hands shaken at a party is exactly twice the number of 

handshakes.   

 

Exercise 1  Show that the number vertices of odd degree in any graph must be even.  (Hint: suppose G 

contains an odd number of odd vertices.  Argue that the left hand side of the above equation is then odd, 

while the right hand side is clearly even.)   

 

Given any 𝑥, 𝑦 ∈ 𝑉(𝐺), an x-y walk in G, is a sequence of vertices 𝑥 = 𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑘−1, 𝑣𝑘 = 𝑦 for which 

𝑣𝑖−1𝑣𝑖 ∈ 𝐸(𝐺) for 1 ≤ 𝑖 ≤ 𝑘.  We call x the origin and y the terminus of the walk.  Note these need not be 

distinct.  If 𝑥 = 𝑦, the walk is said to be closed.  The length of the walk is k, the number of edge traversals 

performed in going from x to y along the sequence.  Since the edges of a graph have no inherent direction, 

we do not distinguish between the above sequence and its reversal: 𝑦 = 𝑣𝑘, 𝑣𝑘−1, … , 𝑣2, 𝑣1, 𝑣0 = 𝑥.  Thus 

the designation as to which vertex in a walk is the origin and which is the terminus is arbitrary.  If G contains 

an x-y walk, we say that y is reachable from x (equivalently x is reachable from y).  A special case of a 

closed walk is the trivial walk 𝑥 = 𝑣0 = 𝑦 of length 0, in which no edges are traversed.   

 

A walk in which no edge is traversed more than once is called a trail, and a trail in which no vertex is visited 

more than once (except possibly when origin=terminus) is called a path.  Observe that the trivial walk is 

both a trail and a path.  A non-trivial closed path is called a cycle.  Since our graphs have no loops or parallel 

edges, the minimum possible length for a cycle is 3. 
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Example 3  Referring again to Example 1 we have: 

 

• a cycle of length 3:   2, 5, 6, 2 

• a cycle of length 6:   1, 2, 3, 6, 5, 4, 1 

• a 1-6 path of length 5:   1, 4, 2, 5, 3, 6 

• a 1-6 path of length 2:   1, 2, 6 

• a 3-1 trail that is not a path:   3, 2, 5, 6, 2, 1 

• a 3-1 walk that is not a trail:   3, 5, 2, 4, 5, 2, 1 

• the trivial 1-1 path:  1  (though this is a closed path, it is not a cycle) 

 

Note that the reachability relation could just as well have been defined in terms of paths instead of walks 

since, if G contains an x-y walk that is not a path, we can, by eliminating some cycles, replace it by an x-y 

path.  For instance the 3-1 walk in Example 1 above (3, 5, 2, 4, 5, 2, 1) contains the cycle (5, 2, 4, 5), and 

can be replaced by the 3-1 path (3, 5, 2, 1). 

 

The distance from x to y , denoted 𝛿(𝑥, 𝑦), is defined as follows.  If y is reachable from x, then 𝛿(𝑥, 𝑦) is 

the length of a shortest x-y path.  If y is not reachable from x (i.e. if no x-y path exists), then 𝛿(𝑥, 𝑦) is 

infinity.  The Single Source Shortest Path (SSSP) problem is this: given a distinguished vertex 𝑠 ∈ 𝑉(𝐺) 

called the source, determine 𝛿(𝑠, 𝑥) for all 𝑥 ∈ 𝑉(𝐺), and for each x that is reachable from s, determine a 

shortest s-x path in G.  We will learn two efficient algorithms that solve this problem. 

 

 

A graph G is said to be connected iff  y is reachable from x for every pair of vertices 𝑥, 𝑦 ∈ 𝑉(𝐺).  If G is 

not connected, it is called disconnected.  Examples 1 and 2 above are clearly connected, while the following 

graph is disconnected. 

 

Example 4   𝑉 = {1, 2, 3, 4, 5, 6, 7, 8, 9},   𝐸 = {12, 15, 25, 26, 56, 37, 38, 78, 49} 

 

                                                 1                 2                  3                   4 

 

 

 

 

 

                                                 5                 6         7                  8        9                 

 

A subgraph of a graph G is a graph H in which 𝑉(𝐻) ⊆ 𝑉(𝐺), and 𝐸(𝐻) ⊆ 𝐸(𝐺).  In the above example, 

({1, 2, 5}, {12, 15, 25}) is a connected subgraph, while ({2, 3, 6, 7}, {26, 37}) is a disconnected subgraph.  

A subgraph H is called a connected component of G if it is (i) connected, and (ii) maximal with respect to 

property (i), i.e. any other subgraph of G that properly contains H is disconnected.  Observe Example 4 has 

three connected components: ({1, 2, 5, 6}, {12, 15, 25, 26, 56}), ({3, 7, 8}, {37, 38, 78}) and ({4, 9}, {49}).  

Obviously a graph is connected if and only if it has exactly one connected component. 

 

Trees 

A graph is called acyclic (or a forest) if it contains no cycles.  A tree is a graph that is both connected and 

acyclic.  The connected components of an acyclic graph are obviously trees.  The following example is a 

forest with three connected components.   
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Example 5   

 

 

 

 

 

 

 

                    # of vertices:                  8                        6                       5 

                       # of edges:                  7                        5                       4 

 

Observe that in each tree of this forest, the number of edges is one less that the number of vertices.  This 

fact holds in general for all trees.  The following lemmas demonstrate how the independent properties of 

connectedness and acyclicity are related. 

 

Lemma 1  If T is a tree with n vertices and m edges, then 𝑚 = 𝑛 − 1. 

 

Proof:   

This result was proved in the handout on Induction Proofs by induction on n.  We prove it here by induction 

on m.  If 𝑚 = 0 then T can have only one vertex, since T is connected.  Thus 𝑛 = 1, and 𝑚 = 𝑛 − 1, 

establishing the base case.  Now let 𝑚 > 0 and assume that any tree 𝑇′ with fewer than m edges satisfies 

|𝐸(𝑇′)| = |𝑉(𝑇′)| − 1.  Pick an edge 𝑒 ∈ 𝐸(𝑇) and remove it.  The resulting graph consists of two trees 

𝑇1, 𝑇2, each having fewer than m edges.  Suppose 𝑇𝑖 has 𝑚𝑖 edges and 𝑛𝑖 vertices (𝑖 = 1, 2).  Then the 

induction hypothesis gives 𝑚𝑖 = 𝑛𝑖 − 1 (𝑖 = 1, 2).  Also 𝑛 = 𝑛1 + 𝑛2 since no vertices were removed.  

Therefore  𝑚 = 𝑚1 + 𝑚2 + 1 = (𝑛1 − 1) + (𝑛2 − 1) + 1 = 𝑛1 + 𝑛2 − 1 = 𝑛 − 1, as required.             ■  

 

Lemma 2  If G is an acyclic graph with n vertices, m edges, and k connected components, then 𝑚 = 𝑛 − 𝑘. 

 

Proof:   

Let the connected components of G (which are necessarily trees) be denoted 𝑇1,  𝑇2,  … , 𝑇𝑘.  Suppose 𝑇𝑖 

has 𝑚𝑖 edges and 𝑛𝑖 vertices respectively (1 ≤ 𝑖 ≤ 𝑘).  By Lemma 1 we have 𝑚𝑖 = 𝑛𝑖 − 1 (1 ≤ 𝑖 ≤ 𝑘).  

Therefore    

 

𝑚 = ∑ 𝑚𝑖

𝑘

𝑖=1

= ∑(𝑛𝑖 − 1)

𝑘

𝑖=1

= ∑ 𝑛𝑖

𝑘

𝑖=1

− ∑ 1

𝑘

𝑖=1

= 𝑛 − 𝑘 

 

as claimed.                                                                                                                                                     ■ 

 

Lemma 3  If G is a connected graph with n vertices and m edges, then 𝑚 ≥ 𝑛 − 1. 

Proof:   

Our proof is a generalization of that of Lemma 1, again by induction on m.  If 𝑚 = 0, then G, being 

connected, can have only one vertex, hence 𝑛 = 1.  Therefore 𝑚 ≥ 𝑛 − 1 reduces to 0 ≥ 0, showing that 

the base case is satisfied.   

 

Let 𝑚 > 0, and assume for any connected graph 𝐺′ with fewer than m edges that |𝐸(𝐺′)|   ≥   |𝑉(𝐺′)| − 1.  

Remove an edge 𝑒 ∈ 𝐸(𝐺) and let 𝐺 − 𝑒 denote the resulting subgraph.  We have two cases to consider. 
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Case 1: 𝐺 − 𝑒 is connected.  We note that 𝐺 − 𝑒 has n vertices and 𝑚 − 1 edges, so the induction hypothesis 

gives 𝑚 − 1 ≥ 𝑛 − 1.  Certainly then 𝑚 ≥ 𝑛 − 1, as was claimed. 

 

Case 2:  𝐺 − 𝑒 is disconnected.  In this case 𝐺 − 𝑒 consists of two connected components.  (**See the claim 

and proof below.)  Call them 𝐻1 and 𝐻2,  and observe that each component contains fewer than m edges.  

Suppose 𝐻𝑖 has 𝑚𝑖 edges and 𝑛𝑖 vertices (𝑖 = 1,  2).  The induction hypothesis gives 𝑚𝑖 ≥ 𝑛𝑖 − 1 (𝑖 =
1,  2).  Also 𝑛 = 𝑛1 + 𝑛2 since no vertices were removed.  Therefore 

 

𝑚 = 𝑚1 + 𝑚2 + 1 ≥ (𝑛1 − 1) + (𝑛2 − 1) + 1 = 𝑛1 + 𝑛2 − 1 = 𝑛 − 1 

 

 and therefore 𝑚 ≥ 𝑛 − 1 as required.                                                                                                         ■ 

 

Claim**:  Let G be a connected graph and 𝑒 ∈ 𝐸(𝐺), and suppose that 𝐺 − 𝑒 is disconnected.  (Such an 

edge e is called a bridge).  Then 𝐺 − 𝑒 has exactly two connected components. 

 

Proof:   

Since 𝐺 − 𝑒 is disconnected, it has at least two components.  We must show that it also has at most two 

components.  Let e have end vertices u, and v.  Let 𝐶𝑢 and 𝐶𝑣 be the connected components of 𝐺 − 𝑒 that 

contain u and v respectively.  Choose 𝑥 ∈ 𝑉(𝐺) arbitrarily, and let P be an x-u path in G (note P exists since 

G is connected.)  Either P includes the edge e, or it does not.  If P does not contain e, then P remains intact 

after the removal of e, and hence P is an x-u path in 𝐺 − 𝑒, whence 𝑥 ∈ 𝐶𝑢.  If on the other hand P does 

contain the edge e, then e must be the last edge along P from x to u. 

 

                                   x                                                                    v                u 

                              P  

                                                                                                                  e 

 

In this case 𝑃 − 𝑒 is an x-v path in 𝐺 − 𝑒, whence 𝑥 ∈ 𝐶𝑣.  Since x was arbitrary, every vertex in 𝐺 − 𝑒 

belongs to either 𝐶𝑢 or 𝐶𝑣, and therefore 𝐺 − 𝑒 has at most two connected components.                             ■ 

 

Lemma 4  If G is a graph with n vertices, m edges, and k connected components, then 𝑚 ≥ 𝑛 − 𝑘. 

 

Proof:   

Let 𝐻1, 𝐻2,  … , 𝐻𝑘 , be the connected components of G.  Let 𝑛𝑖 and 𝑚𝑖 denote the number of vertices and 

edges, respectively, of 𝐻𝑖, for 1 ≤ 𝑖 ≤ 𝑘.  By Lemma 3 we have 𝑚𝑖 ≥ 𝑛𝑖 − 1, for 1 ≤ 𝑖 ≤ 𝑘, and therefore  

      

𝑚 = ∑ 𝑚𝑖

𝑘

𝑖=1

≥ ∑(𝑛𝑖 − 1)

𝑘

𝑖=1

= ∑ 𝑛𝑖

𝑘

𝑖=1

− ∑ 1

𝑘

𝑖=1

= 𝑛 − 𝑘 

  

whence 𝑚 ≥ 𝑛 − 𝑘 as claimed.                                                                                                                      ■  

 

Lemma 5  Let G be a connected graph with n vertices and m edges.  Suppose also that 𝑚 = 𝑛 − 1.  Then 

G is acyclic, and hence a tree.   

 

Proof:   

Suppose G is connected and 𝑚 = 𝑛 − 1.  Assume, to get a contradiction, that G is not acyclic.  Let e be any 

edge belonging to any cycle in G.  Remove e from G, and denote the resultant graph by 𝐺 − 𝑒.  Observe 
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that 𝐺 − 𝑒 has 𝑚 − 1 edges and n vertices, respectively.  Since e is a cycle edge, its removal does not 

disconnect G, and therefore 𝐺 − 𝑒 is also connected.  Lemma 3 above then gives 𝑚 − 1 ≥ 𝑛 − 1, whence 

𝑚 ≥ 𝑛.  But then 𝑚 = 𝑛 − 1 gives 𝑛 − 1 ≥ 𝑛, a contradiction.  Therefore our original assumption was 

false, and therefore G is acyclic, as claimed.  Being connected, G is also a tree.                                          ■ 

 

Lemma 6   Let G be an acyclic graph with n vertices and m edges.  Suppose also that 𝑚 = 𝑛 − 1.  Then G 

is connected, and hence a tree.   

Proof:   

Suppose G is acyclic and 𝑚 = 𝑛 − 1.  Let k be the number of connected components of G.  By Lemma 2 

we have 𝑚 = 𝑛 − 𝑘, whence 𝑛 − 1 = 𝑛 − 𝑘, and hence 𝑘 = 1, showing that G is connected, as claimed.  

                                                                                                                                                                       ■  

 

Lemma 7  Let G be a connected graph with n vertices and m edges.  Suppose also that 𝑚 = 𝑛.  Then G 

contains exactly one cycle.  (Such a graph is called unicyclic.) 

 

Proof: 

G contains at least one cycle since otherwise G is a tree, and hence 𝑚 = 𝑛 − 1 (by Lemma 1), contrary to 

hypothesis.  If G contained two distinct cycles, say 𝐶1 and 𝐶2, we could find edges 𝑒1 ∈ 𝐸(𝐶1) − 𝐸(𝐶2) and 

𝑒2 ∈ 𝐸(𝐶2) − 𝐸(𝐶1).  Removing these two edges gives a connected graph 𝐻 = 𝐺 − 𝑒1 − 𝑒2 with |𝑉(𝐻)|   =
 𝑛 and |𝐸(𝐻)|   =  𝑛 − 2, contradicting Lemma 3.                                                                                        ■  

 

Consider the following three properties of a graph 𝐺 = (𝑉, 𝐸) in light of Lemmas 1, 5, and 6:  

 

(i) G is connected,   

(ii) G is acyclic  

(iii) |𝐸| = |𝑉| − 1.   

 

We see that these properties are logically dependent in the sense that if any two hold, then the third must 

also hold.  Lemma 1 states that (i) and (ii) together imply (iii), Lemma 5 says that (i) and (iii) imply (ii), 

and Lemma 6 says (ii) and (iii) imply (i).  The following theorem summarizes these and other facts about 

trees. 

 

Theorem 1 (The Treeness Theorem)  Let 𝐺 = (𝑉, 𝐸) be a graph with |𝑉| = 𝑛 and |𝐸| = 𝑚.  Then the 

following statements are equivalent. 

 

a) G is a tree (i.e. connected and acyclic). 

b) G contains a unique x-y path for any 𝑥, 𝑦 ∈ 𝑉. 

c) G is connected, but if any edge is removed, the resulting graph 𝐺 − 𝑒 is disconnected. 

d) G is connected, and 𝑚 = 𝑛 − 1. 

e) G is acyclic, and 𝑚 = 𝑛 − 1. 

f) G is acyclic, but if any edge is added (joining two non-adjacent vertices), then the resulting graph 

𝐺 + 𝑒 contains a unique cycle. 

 

Note:  This is theorem B.2 in Cormen, Leiserson, Rivest, & Stein (p.1085 in 2nd ed., p.1174 in 3rd ed.) 

 

Proof:  As mentioned in the preceding paragraph, Lemmas 1, 5, and 6 have already established the 

equivalences (a)⇔(d)⇔(e).   
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(a)⇒(b):  Suppose G is a tree and let 𝑥, 𝑦 ∈ 𝑉(𝐺).  If 𝑥 = 𝑦, then the trivial path is the only x-y path in G, 

since being a tree, G has no cycles.  Suppose 𝑥 ≠ 𝑦.  Since G is connected, there exists at least one 𝑥-𝑦 path 

in G.  Assume, to get a contradiction, that G contains two distinct 𝑥-𝑦 paths.  Call them 𝑝1 and 𝑝2.  By 

traveling along 𝑝1 from x to y, then along 𝑝2 from y to x, we obtain a closed walk in G that begins and ends 

at x.  If no vertex (other than x) is repeated in this walk, then we have found a cycle in G.  If some vertex is 

repeated in this walk, we can obtain a cycle as follows.  Travel along 𝑝1 from x to the first repeated vertex, 

then back to x along 𝑝2.  Therefore G contains a cycle, contradicting that it is a tree.  This contradiction 

shows our assumption was false, and hence two different 𝑥-𝑦 paths cannot exist in G, which therefore 

contains a unique 𝑥-𝑦 path. 

 

(𝑏) ⇒ (𝑐):  Suppose G contains a unique x-y path for any 𝑥, 𝑦 ∈ 𝐺.  Then G is certainly connected.  Pick 

any edge 𝑒 = {𝑥, 𝑦} ∈ 𝐸 and remove it.  Since e constitutes a path joining its two ends (x and y) and since 

there are no other such paths by hypothesis, the resulting graph 𝐺 − 𝑒 contains no x-y path, and is therefore 

disconnected. 

 
(𝑐) ⇒ (𝑎):  Suppose G is connected, and if any edge is removed from G, the resulting graph is disconnected.  

Assume, to get a contradiction, that G contains a cycle.  Then the removal of any edge on that cycle would 

not disconnect G, contrary to hypothesis.  It follows that no such cycle can exist, and hence G is acyclic.  

Since G is also connected, it is a tree.    

 
(𝑎) ⇒ (𝑓):  Suppose G is a tree (i.e. connected and acyclic).  By Lemma 1 we also have 𝑚 = 𝑛 − 1.  Pick 

any two non-adjacent vertices and join them with a new edge e.  The resulting graph 𝐺 + 𝑒 is still connected, 

and |𝐸(𝐺 + 𝑒)| = 𝑚 + 1 = 𝑛 = |𝑉(𝐺 + 𝑒)|.  Lemma 7 now says that 𝐺 + 𝑒 contains exactly one cycle.  

  
(𝑓) ⇒ (𝑎):  Suppose G is acyclic, and if a new edge e is inserted between any two non-adjacent vertices, 

then the resulting graph 𝐺 + 𝑒 is unicyclic.  Pick any 𝑥, 𝑦 ∈ 𝑉 with 𝑥 ≠ 𝑦.  If x and y are adjacent, then 

certainly y is reachable from x.  If x and y are non-adjacent, insert a new edge e joining x to y, and call the 

resulting cycle C.  Observe that the edges of 𝐶 − 𝑒 constitute an x-y path in G, so in this case also, y is 

reachable from x.  Since x and y were arbitrary, we conclude that G is connected, and therefore a tree. 

 

This completes the proof of the Treeness Theorem.                                                                                         ■ 

 

 

Directed Graphs 
A Directed Graph (or Digraph) 𝐺 = (𝑉, 𝐸) is a pair of sets, where the vertex set 𝑉 = 𝑉(𝐺) is, as before, 

finite and non-empty, and the edge set 𝐸 = 𝐸(𝐺) ⊆ 𝑉 × 𝑉, i.e. E consists of ordered pairs of vertices.   

 

Example 6   𝑉 = {𝑥, 𝑦, 𝑢, 𝑣} and 𝐸 = {(𝑥, 𝑦), (𝑢, 𝑥), (𝑣, 𝑦), (𝑣, 𝑢), (𝑥, 𝑣)} 

 

                                                                   x                      y 

 

 

 

 

 

 

                                                                  u                       v 
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The directed edge (x, y) in the above example is said to have origin x and terminus y, and we say that  x is 

adjacent to y.  The origin and terminus of a directed edge are said to be incident with that edge.  Two edges 

are called adjacent if they have a common end vertex, so for instance (x, y) in the above example is adjacent 

to (u, x).  The in degree of a vertex is the number of edges having that vertex as terminus, and it’s out degree 

is the number of edges having that vertex as origin.  The degree of a vertex is the sum if it’s in degree and 

out degree.  Thus in the above example id(𝑥) = 1, od(𝑥) = 2, and deg(𝑥) = 3.  The analog of the 

handshake lemma for directed graphs is 

 

∑ id(𝑥)

𝑥∈𝑉(𝐺)

  = ∑ od(𝑥)

𝑥∈𝑉(𝐺)

=   |𝐸(𝐺)| 

 

As in the undirected case, there is a simple notion of isomorphism for directed graphs.  Two digraphs 𝐺1 

and 𝐺2 are said to me isomorphic if there exists a bijection 𝜑: 𝑉(𝐺1) → 𝑉(𝐺2) such that for any 𝑥, 𝑦 ∈
𝑉(𝐺1), the ordered pair (𝑥,  𝑦) is a directed edge of 𝐺1 if and only if the ordered pair (𝜑(𝑥),  𝜑(𝑦)) is a 

directed edge of 𝐺2.  Thus 𝜑 preserves incidence relations and directionality amongst the vertices and edges 

of 𝐺1.  We write 𝐺1 ≅ 𝐺2 to mean that 𝐺1 and 𝐺2 are isomorphic.   

 

A directed path P in a digraph is a finite sequence of vertices P: 𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑘−1, 𝑣𝑘 such that (𝑣𝑖−1, 𝑣𝑖) ∈
𝐸 for all 1 ≤ 𝑖 ≤ 𝑘.  As in the undirected case, we require that all vertices be distinct (except possibly 𝑣0 

and 𝑣𝑘), and that no edge be traversed more than once.  If it so happens that the initial and terminal vertices 

are the same, 𝑣0 = 𝑣1, the path is called a directed cycle.  The length of such a path is k, the number of 

edges traversed.  If 𝑥 = 𝑣0 ≠ 𝑣𝑘 = 𝑦, we call P a directed x-y path.  Notice that, unlike the undirected case, 

a directed x-y path and a directed y-x path are not the same thing.  We say that 𝑦 ∈ 𝑉(𝐺) is reachable from 

𝑥 ∈ 𝑉(𝐺) if G contains a directed x-y path.  Observe that for digraphs, the reachability relation is reflexive 

(x is reachable from x via the trivial path with no edges), transitive (if y is reachable from x, and z is reachable 

from y, then z is reachable from x), but not symmetric (y may be reachable from x without x being reachable 

from y). 

 

A digraph G is said to be strongly connected if for all 𝑥,  𝑦  ∈ 𝑉(𝐺), both x is reachable from y, and y is 

reachable from x.  Notice that the digraph in Example 6 above is not strongly connected, since for instance, 

u is not reachable from y.  The following example is strongly connected. 

 

Example 7   𝑉 = {𝑥, 𝑦, 𝑢, 𝑣} and 𝐸 = {(𝑥, 𝑦), (𝑢, 𝑥), (𝑦, 𝑣), (𝑣, 𝑢), (𝑥, 𝑣)} 

 

                                                                   x                      y 

 

 

 

 

 

 

                                                                  u                       v 

 

More generally, a subset 𝑆 ⊆ 𝑉(𝐺) is said to be strongly connected if for all 𝑥,  𝑦 ∈ 𝑆, both x is reachable 

from y, and y is reachable from x.   Furthermore, a subset 𝑆 ⊆ 𝑉(𝐺) is said to be a strongly connected 

component of the digraph G if it is (i) strongly connected, and (ii) maximal with respect to property (i), i.e. 

any other subset of 𝑉(𝐺) that properly contains S is not strongly connected.  Obviously G is strongly 
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connected iff it has just one strongly connected component, namely 𝑉(𝐺) itself.  Going back to the digraph 

in Example 6, we see that it has 2 strongly connected components: {𝑥, 𝑢, 𝑣} and {𝑦}. 

 

If we replace each directed edge in a digraph G with an undirected edge, we obtain an (undirected) graph 

known as the underlying undirected graph of G.  Note that two non-isomorphic digraphs, such as Examples 

6 and 7 above, can have the very same underlying graph. 

 

Representations of Graphs and Digraphs 
We discuss three methods for representing graphs and digraphs in terms of standard data structures available 

in most computer languages.  They are called the Incidence Matrix, the Adjacency Matrix, and the 

Adjacency List representations respectively.  In what follows we suppose 𝐺 = (𝑉,  𝐸) to be a graph 

(directed or undirected) with |𝑉| = 𝑛 and |𝐸| = 𝑚. 

 

The Incidence Matrix 𝐼(𝐺) requires that both the vertex set 𝑉(𝐺) and the edge set 𝐸(𝐺) be ordered.  For 

this purpose we suppose that 𝑉 = {𝑥1, 𝑥2, … , 𝑥𝑛} and 𝐸 = {𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑚}.  Then 𝐼(𝐺) is an 𝑛 × 𝑚 

rectangular matrix.  Row i corresponds to vertex 𝑥𝑖, for 1 ≤ 𝑖 ≤ 𝑛.  Column j corresponds to edge 𝑒𝑗 (1 ≤

𝑗 ≤ 𝑚), and contains zeros everywhere except for the two rows corresponding to the ends of 𝑒𝑗.  If G is an 

undirected graph, these two rows contain 1s.  If G is a directed graph, the row corresponding to the origin 

of 𝑒𝑗 contains −1, while the row corresponding to the terminus of 𝑒𝑗 contains +1.  Thus 𝐼(𝐺) = (𝐼𝑖𝑗) where 

in the undirected case: 

 

𝐼𝑖𝑗 = {
1    if 𝑥𝑖 is incident with 𝑒𝑗

0    otherwise
 

and in the directed case: 

𝐼𝑖𝑗 = {

1    if 𝑥𝑖 is the terminus of 𝑒𝑗

−1    if 𝑥𝑖 is the origin of 𝑒𝑗

0    otherwise

 

 

We illustrate on the graph G and digraph D pictured below. 

 

 

                              1           1         2                               1            1        2 

 

                        G                                                       D                                                              
                               2            3           4                                2            3           4                    
 

                              3           5         4                               3           5         4 

 

 

                𝐼(𝐺)   =   (

1 1 0 0 0
1 0 1 1 0
0 1 1 0 1
0 0 0 1 1

)               𝐼(𝐷) = (

−1 −1 0 0 0
1 0 −1 −1 0
0 1 1 0 −1
0 0 0 1 1

) 
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The Adjacency Matrix 𝐴(𝐺) requires that only the vertex set come equipped with an order.  It is a square 

matrix  of size 𝑛 × 𝑛.  Let 𝑉 = {𝑥1, 𝑥2, … , 𝑥𝑛} and define the ith row and jth column of  𝐴(𝐺) to be 1 if there 

is an edge from 𝑥𝑖 to 𝑥𝑗, and 0 otherwise.  Thus we have 𝐴(𝐺) = (𝐴𝑖𝑗) where in the undirected case 

 

𝐴𝑖𝑗 = {
1    if 𝑥𝑖is adjacent to 𝑥𝑗

0    otherwise
 

and in the directed case 

𝐴𝑖𝑗 = {
1    if there is an edge with origin 𝑥𝑖 and terminus 𝑥𝑗

0    otherwise
 

 

Observe that for an undirected graph 𝐴 = 𝐴(𝐺) is a symmetric matrix (i.e. 𝐴 = 𝐴𝑇, where 𝐴𝑇 denotes the 

transpose of 𝐴.)  The Adjacency Matrix for a directed graph is not in general symmetric.  We illustrate on 

the same graph and digraph as before. 

 

                𝐴(𝐺)   =   (

0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

)                       𝐴(𝐷)   =   (

0 1 1 0
0 0 1 1
0 0 0 1
0 0 0 0

) 

 

 

The Adjacency List  representation of G consists of an array adj  =  adj(𝐺) of n lists.  As above, let 𝑉 =
{𝑥1, 𝑥2, … , 𝑥𝑛}.  Then in the undirected case, the array element adj[𝑖] is a list containing the vertices adjacent 

to 𝑥𝑖 (1 ≤ 𝑖 ≤ 𝑛).  In the directed case adj[𝑖] is a list containing the termini of edges having origin 𝑥𝑖.   

 

   Undirected case:        Directed Case: 

   adj[1]: list of neighbors of 𝑥1      adj[1]: list of termini of edges having origin 𝑥1 

   adj[2]: list of neighbors of 𝑥2      adj[2]: list of termini of edges having origin 𝑥2 

   adj[3]: list of neighbors of 𝑥3      adj[3]: list of termini of edges having origin 𝑥3 

       ⋮              ⋮ 
   adj[i]: list of neighbors of 𝑥𝑖      adj[i]: list of termini of edges having origin 𝑥𝑖 

       ⋮              ⋮ 
   adj[n]: list of neighbors of 𝑥𝑛      adj[n]: list of termini of edges having origin 𝑥𝑛 

 

Again we illustrate on the same examples. 

 

                adj(𝐺)   =   {

1: 2 3
2: 1 3 4
3: 1 2 4
4: 2 3

                 adj(𝐷)   =   {

1: 2 3
2: 3 4
3: 4
4:

 

 

Observe that the adjacency list representation is nothing more than the sparse matrix representation (as in 

pa2) of the adjacency matrix. 

 

 

Exercise 2 

Let G be a graph, 𝐴 = 𝐴(𝐺) its adjacency matrix, and 𝑑 ≥ 0.  Show that the number of walks in G from 𝑥𝑖 

to 𝑥𝑗 of length d is given by the 𝑖𝑗th entry of 𝐴𝑑.  Hint: Use weak induction on d starting at 𝑑 = 0, noting 

that 𝐴0 = 𝐼, the identity matrix.  For the induction step observe that any walk from 𝑥𝑖 to 𝑥𝑗 of length 𝑑 + 1 
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consists of a walk from 𝑥𝑖 to some intermediate vertex 𝑥𝑘 of length d, followed by the traversal of a single 

edge from 𝑥𝑘 to 𝑥𝑗. 

 

                                                                length d  

 

 

                             𝑥𝑖                                                                                𝑥𝑘         𝑥𝑗   

 

The number of such walks from 𝑥𝑖 to 𝑥𝑘 is (𝐴𝑑)𝑖𝑘 by the induction hypothesis, and the number of such 

edges (0 or 1) is 𝐴𝑘𝑗.   

 

Exercise 3 

State and prove a theorem, analogous to the one above, for directed graphs. 

 

Exercise 4 

The purpose of this exercise is to discover how the previous result can be used to solve the all pairs shortest 

paths (APSP) problem: 

 

Given a graph G with n vertices, 𝑉(𝐺) = {𝑥1, 𝑥2, … … , 𝑥𝑛}, do the following for all pairs i, j 

satisfying 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛: (1) determine the length 𝛿(𝑥𝑖, 𝑥𝑗) of a shortest 𝑥𝑖-𝑥𝑗 path, and (2) if  

𝛿(𝑥𝑖, 𝑥𝑗) < ∞, determine a shortest 𝑥𝑖-𝑥𝑗 path.   

 

Fix such a pair i, j. 

 

a. Show that if 𝛿(𝑥𝑖, 𝑥𝑗) < ∞ (i.e. 𝑥𝑗 is reachable from 𝑥𝑖), then 𝛿(𝑥𝑖, 𝑥𝑗) ≤ 𝑛 − 1. 

b. Show that a minimum length walk from 𝑥𝑖 to 𝑥𝑗 is necessarily an 𝑥𝑖-𝑥𝑗 path, and hence a shortest such 

path. 

c. If M is an 𝑛 × 𝑛 matrix, let 𝑀𝑖𝑗 denote its 𝑖𝑗th entry, i.e. the element in its 𝑖𝑡ℎ row, 𝑗𝑡ℎ  column.  Suppose 

that (𝐴𝑘)𝑖𝑗 is the first non-zero term in the integer sequence: 𝐼𝑖𝑗 , 𝐴𝑖𝑗 , (𝐴2)𝑖𝑗 , (𝐴3)𝑖𝑗 , … … , (𝐴𝑛−1)𝑖𝑗.  

(Here 𝐼 denotes the 𝑛 × 𝑛 identity matrix.)  Show that 𝛿(𝑥𝑖, 𝑥𝑗) = 𝑘. 

d. (More difficult). Observe that (c) solves part (1) of APSP.  Figure out how to solve part (2) of APSP. 

 

 

 

 

 


