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CSE 101 

Introduction to Data Structures and Algorithms 

Algorithm Runtime and Efficiency 
 

How should we measure the runtime of an algorithm?  A standard approach is to identify some basic 

operation within the algorithm, then count the number of times that operation is performed on particular 

inputs.  Runtime is thus measured not in seconds, but by our integer count of the number of executions of 

that basic operation.  Care must therefore be taken in choosing which operation to count, so as not to obtain 

a runtime that is artificially low.  We thus seek an operation that will be executed as many, or more, times 

than any other operation in the algorithm.   

 

This is not as difficult as it may sound.  For iterative algorithms, we choose an operation within the body 

of the innermost loop. 

 

Example  

A simple algorithm that performs some generic operations. 

 
op1 

for i=1 to 10 

   op2 

   for j=1 to 10 

      op3 

      for k=1 to 10 

         op4 

          

Examination of this pseudo-code reveals the number of executions of each operation to be those given in 

the following table. 

 

operation # executions 
op1 1 
op2 10 
op3 100 
op4 1000 

 

Assuming that the costs of ops 1-4 are (at least approximately) equal, the better choice of basic operation is 

op4, since doing something 1000 times is worse than doing some (roughly equivalent) thing 1, or 10, or 

100 times.  Two obvious questions arise though.   

 

(1) What if ops 1-4 are not of equal cost 

and  

(2) Why not count all operations? 

 

To address (1), we would need to look inside ops 1-4.  Consider the case for instance when ops 1-4 are 

themselves function calls.  We would examine the code for each function and attempt to analyze its runtime 

in terms of some more basic operation(s).  Ultimately then, we should deconstruct our pseudo-code to a 

point where each basic operation is of approximately equal constant cost, then measure runtime in those 

constant units.  Let us assume, for convenience, that we have already done this, so that ops 1-4 might as 

well be the same operation. 
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This brings up question (2).  The total number of executions of all operations (now assumed to have 

equivalent cost) in the above example is 1000 + 100 + 10 + 1 = 1,111.  We could justifiably take this as 

the cost, but very few iterative algorithms (that do anything interesting) iterate a fixed number of times, as 

above.  A more realistic situation would be an algorithm taking an integer 𝑛 as input, and having the number 

of iterations depend on that input. 

 

Example  

Another simple algorithm performing a single operation op inside nested loops, whose number of iterations 

depend on 𝑛. 

 
op 

for i=1 to 𝑛 
   op 

   for j=1 to 𝑛 
      op 

      for k=1 to 𝑛 
         op 

 

The number of executions of our basic operation is now a function 𝑇(𝑛) = 𝑛3 + 𝑛2 + 𝑛 + 1 of the input 

value 𝑛.  The question is whether we should ignore the lower order terms in this function, and instead 

consider the runtime to be the simpler function 𝑛3.  Note that the point of our analysis is not to determine 

the runtime for a fixed value of 𝑛, but for all values of 𝑛, and especially for arbitrarily large such values.  

In other words, we wish to determine how the runtime grows with the parameter 𝑛.  But both functions, the 

accurate 𝑇(𝑛), and the estimate 𝑛3, grow without bound as 𝑛 becomes arbitrarily large.  To compare them, 

we consider their quotient 𝑇(𝑛)/𝑛3, and analyze its behavior in the limit as 𝑛 approaches ∞.  We see that 

 

lim
𝑛→∞

𝑇(𝑛)

𝑛3
 = lim

𝑛→∞

𝑛3 + 𝑛2 + 𝑛 + 1

𝑛3
= lim

𝑛→∞
(1 +

1

𝑛
+
1

𝑛2
+
1

𝑛3
) = 1 

 

The limit 1 indicates that the two functions 𝑇(𝑛) and 𝑛3, although they both have limit ∞ as 𝑛 → ∞, 

approach  ∞  at the same rate.  We therefore deem the runtime, measured as the number of basic operations 

performed, to be 𝑛3.  Equivalently, we can simply refrain from counting those operations not within the 

body of the innermost loop, making the above algorithm equivalent, as far as runtime is concerned, to 

 
for i=1 to 𝑛 
   for j=1 to 𝑛 
      for k=1 to 𝑛 
         op 

 

Now suppose we analyze a second algorithm that performs 2 executions of op within its innermost loop.   

 
for i=1 to 𝑛 
   for j=1 to 𝑛 
      for k=1 to 𝑛 
         op 

         op 
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Let us also suppose that these two algorithms (somehow) accomplish the same overall task, so it makes 

sense to compare them.  The runtime of the second algorithm is easily seen to be 2𝑛3.  It would appear that 

the first algorithm is twice as efficient as the second, since it produces the same result at half the cost.   

 

But what if we run the second algorithm on a machine that runs twice as fast?  If we do that, we will have 

equalized the two algorithms, and we will have done so for any value of 𝑛.  Our goal however, is to 

determine a procedure for analyzing runtime that is independent of the computing device on which the 

algorithm is running.  In other words, we don't want to measure how fast the computer is.  We want to 

measure how fast the algorithm is.  You might think that one can always equalize two algorithms by running 

one on a faster machine, but that is not the case, provided we wish to take into account all possible 𝑛.    

Consider for instance a third algorithm that again performs the same overall task as the preceding two. 

 
for i=1 to 𝑛 
   for j=1 to 𝑛 
      for k=1 to 10 

         op 

 

This algorithm runs in time 10𝑛2.  If we compare this to the runtime of the first, i.e. 𝑛3, we find that the 

first is better (does fewer basic operations) for small 𝑛, and the third is better for large 𝑛.  Specifically, the 

two algorithms perform the same number of operations only for 𝑛 satisfying the equation 𝑛3 = 10𝑛2, 

namely for 𝑛 = 10.  The better algorithm is the one that does fewer operations for the larger number of 

input sizes.  Thus the third algorithm is best, since it wins for all infinitely many 𝑛 > 10.  Observe also that 

there is no way to equalize the two algorithms for infinitely many 𝑛.  If we run the first algorithm on a 

machine that is 100 times faster than the device running the third, all that is accomplished is to move the 

crossover point from 10 to 1000, since the equation is now 𝑛3/100 = 10𝑛2.  This tells us that we should 

ignore the coefficient of the leading term, i.e. replace it by 1. 

 

Our discussion has led us to the following informal procedure for analyzing iterative algorithms. 

 

(1) Choose a basic operation that appears within the body of the innermost loop. 

(2) Count the number of executions of this operation as a function of the input size 𝑛. 

(3) Simplify the function found in (2) by dropping all lower order terms, and replacing the 

coefficient of the highest order term by 1. 

 

The simplified function found in (3), or rather its rate of growth, is then deemed to be an algorithm's runtime.  

Thus, if we wish to compare two algorithms that perform the same task, we must compare the growth rate 

rates of two functions. 

 

 

 

Asymptotic Growth of Functions 
In what follows, let 𝑓(𝑛) and 𝑔(𝑛) denote positive functions.   

 

Definition 1   

𝑓(𝑛) = 𝑂(𝑔(𝑛)) if and only if there exist 𝐵 > 0 and 𝑛0 > 0 such that 
𝑓(𝑛)

𝑔(𝑛)
≤ 𝐵  for all 𝑛 ≥ 𝑛0.  We say 

𝑔(𝑛) is an asymptotic upper bound for 𝑓(𝑛).  Intuitively, 𝑓(𝑛) = 𝑂(𝑔(𝑛)) means that the growth rate of 

𝑓(𝑛) is no greater than that of 𝑔(𝑛). 
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Example  

Let 𝑓(𝑛) = 2𝑛 + 5 and 𝑔(𝑛) = 𝑛.  In this case 
𝑓(𝑛)

𝑔(𝑛)
= 2 +

5

𝑛
≤ 3 for all 𝑛 ≥ 5, as one can easily verify.  In 

this case, the constants in the definition are 𝐵 = 3 and 𝑛0 = 5.  Observe the 𝐵 and 𝑛0 are not unique.  For 

instance 𝐵 = 6 and 𝑛0 = 2 would also work.  Thus 2𝑛 + 5 = 𝑂(𝑛). 
 

A moment's thought suggests that there is nothing special about the coefficients 2 and 5 in this example.  

As an exercise, verify that 𝑎𝑛 + 𝑏 = 𝑂(𝑛) for any real numbers 𝑎 and 𝑏.  (Hint: let 𝐵 = |𝑎| + 1 and let 

𝑛0 = ⌈|𝑏|⌉, where ⌈𝑥⌉ is the ceiling function, the least integer greater than or equal to 𝑥).  

 

Definition 2   

𝑓(𝑛) = Ω(𝑔(𝑛)) if and only if there exist 𝐵 > 0 and 𝑛0 > 0 such that 𝐵 ≤
𝑓(𝑛)

𝑔(𝑛)
  for all 𝑛 ≥ 𝑛0.  We say 

𝑔(𝑛) is an asymptotic lower bound for 𝑓(𝑛).  We understand 𝑓(𝑛) = Ω(𝑔(𝑛)) to mean that the growth rate 

of 𝑓(𝑛) is no less than that of 𝑔(𝑛).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example   

Let 𝑓(𝑛) = 6𝑛3 + 4𝑛 and 𝑔(𝑛) = 2𝑛2.  One checks that 
𝑓(𝑛)

𝑔(𝑛)
= 3𝑛 +

2

𝑛
≥ 7 for all 𝑛 ≥ 2.  Hence, with 

constants 𝐵 = 7 and 𝑛0 = 2, we have 6𝑛3 + 4𝑛 = Ω(2𝑛2). 
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Observe that 
𝑓(𝑛)

𝑔(𝑛)
≤ 𝐵1 iff  

𝑔(𝑛)

𝑓(𝑛)
≥ 𝐵2, where 𝐵2 =

1

𝐵1
.  It follows that 𝑓(𝑛) = 𝑂(𝑔(𝑛)) iff 𝑔(𝑛) = Ω(𝑓(𝑛)).  

Applying this fact to the last two examples we obtain two more: 𝑛 = Ω(2𝑛 + 5) and 2𝑛2 = 𝑂(6𝑛3 + 4𝑛). 
 

Definition 3   

𝑓(𝑛) = Θ(𝑔(𝑛)) if and only if there exist positive 𝐵1, 𝐵2 and 𝑛0 such that 𝐵1 ≤
𝑓(𝑛)

𝑔(𝑛)
≤ 𝐵2  for all 𝑛 ≥ 𝑛0.  

In this case, we say 𝑔(𝑛) is a tight asymptotic bound for 𝑓(𝑛). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Obviously 𝑓(𝑛) = Θ(𝑔(𝑛)) iff both 𝑓(𝑛) = 𝑂(𝑔(𝑛)) and 𝑓(𝑛) = Ω(𝑔(𝑛)).  We thus interpret 𝑓(𝑛) =

Θ(𝑔(𝑛)) to mean that 𝑓(𝑛) and 𝑔(𝑛) grow at the same rate.  Coupled with our previous observation that 

𝑓(𝑛) = 𝑂(𝑔(𝑛)) iff 𝑔(𝑛) = Ω(𝑓(𝑛)), we see that 𝑓(𝑛) = Θ(𝑔(𝑛)) iff 𝑔(𝑛) = Θ(𝑓(𝑛)). 
 

Example   

Let 𝑓(𝑛) = 5𝑛2 + 11𝑛 − 24 and 𝑔(𝑛) = 𝑛2.  In this case we take 𝐵1 = 4, 𝐵2 = 6 and 𝑛0 = 8.  The reader 

should check that 

4 ≤
5𝑛2 + 11𝑛 − 24

𝑛2
≤ 6, 

 

for all 𝑛 ≥ 8.  Hence 5𝑛2 + 11𝑛 − 24 = Θ(𝑛2).  We leave it as an exercise to show for any real numbers 

𝑎, 𝑏, 𝑐 with 𝑎 > 0, that 𝑎𝑛2 + 𝑏𝑛 + 𝑐 = Θ(𝑛2).   
 

Definition 4   

𝑓(𝑛) = 𝑜(𝑔(𝑛)) if and only if lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= 0.  We say 𝑔(𝑛) is a strict asymptotic upper bound for 𝑓(𝑛).  If 

both 𝑓(𝑛) and 𝑔(𝑛) both approach ∞ as 𝑛 → ∞, 𝑓(𝑛) grows so much slower than 𝑔(𝑛), that the ratio 

approches 0.  Thus we interpret 𝑓(𝑛) = 𝑜(𝑔(𝑛)) to mean that 𝑓(𝑛) grows strictly slower than 𝑔(𝑛).   
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Example 

Let 𝑓(𝑛) = ln (𝑛) and 𝑔(𝑛) = 𝑛.  L'Hopital's rule yeilds lim
𝑛→∞

ln𝑛

𝑛
= lim
𝑛→∞

1/𝑛

1
= lim

𝑛→∞

1

𝑛
=0, showing that 

ln(𝑛) = 𝑜(𝑛).  Observe that the calculation is basically the same for 𝑓(𝑛) = log𝑏(𝑛) and 𝑔(𝑛) = 𝑛𝑘, with 

any 𝑏 > 1 and 𝑘 > 0 (and ⌈𝑘⌉ applications of L'Hopital's rule.)  Thus log𝑏(𝑛) = 𝑜(𝑛
𝑘). 

 

Example   

Let 𝑓(𝑛) = 𝑛𝑘 (where 𝑘 ≥ 0 is an integer) and 𝑔(𝑛) = 𝑒𝑛.  Then after 𝑘 applications of L'Hopital's rule 

 

lim
𝑛→∞

𝑛𝑘

𝑒𝑛
= lim

𝑛→∞

𝑘𝑛𝑘−1

𝑒𝑛
= ⋯ = lim

𝑛→∞

𝑘(𝑘 − 1)(𝑘 − 2)⋯1

𝑒𝑛
= 0, 

 

whence 𝑛𝑘 = 𝑜(𝑒𝑛).  Observe that if 𝑘 is not an integer, then ⌈𝑘⌉ applications will suffice.  As an exercise, 

check that 𝑛𝑘 = 𝑜(𝑏𝑛) for any 𝑏 > 1.     

 

Example   

Let 𝑓(𝑛) = 𝑛𝛼 and 𝑔(𝑛) = 𝑛𝛽 where 0 ≤ 𝛼 < 𝛽 are real numbers.  Then lim
𝑛→∞

𝑛𝛼

𝑛𝛽
= lim
𝑛→∞

1

𝑛𝛽−𝛼
= 0, since 

𝛽 − 𝛼 > 0, and hence 𝑛𝛼 = 𝑜(𝑛𝛽). 

 

Definition 5   

𝑓(𝑛) = 𝜔(𝑔(𝑛)) if and only if lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= ∞.  We say 𝑔(𝑛) is a strict asymptotic lower bound for 𝑓(𝑛).  

If 𝑓(𝑛) and 𝑔(𝑛) both approach ∞ as 𝑛 → ∞, then 𝑓(𝑛) grows so much faster than 𝑔(𝑛), that the ratio 

approaches ∞.  Accordingly, we interpret 𝑓(𝑛) = 𝜔(𝑔(𝑛)) to mean 𝑓(𝑛) grows strictly faster than 𝑔(𝑛). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Observe that the relationship between 𝑜 and 𝜔 is similar to that between 𝑂 and Ω, since the limit of a 

reciprocal is the reciprocal of the limit (considering 1/∞ = 0 and 1/0 = ∞.)  Thus 

 

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
=0  if and only if lim

𝑛→∞

𝑔(𝑛)

𝑓(𝑛)
=∞,   

 

and therefore 

 

𝑓(𝑛) = 𝑜(𝑔(𝑛)) if and only if 𝑔(𝑛) = 𝜔(𝑓(𝑛)). 
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The preceding three examples now give rise to three more examples pertaining to 𝜔:  𝑛𝑘 = 𝜔(log𝑏(𝑛)), 
𝑏𝑛 = 𝜔(𝑛𝑘) and 𝑛𝛽 = 𝜔(𝑛𝛼). 
 

Example 

Let 𝑓(𝑛) = 𝑏𝑛 and 𝑔(𝑛) = 𝑎𝑛, where 1 ≤ 𝑎 < 𝑏.  Then 
𝑏𝑛

𝑎𝑛
= (

𝑏

𝑎
)
𝑛

→ ∞ since 
𝑏

𝑎
> 1, and 𝑏𝑛 = 𝜔(𝑎𝑛).  

The comments in the paragraph above now imply 𝑎𝑛 = 𝑜(𝑏𝑛). 
 

 

Analogy with Numbers   

The comparision of positive functions 𝑓(𝑛) and 𝑔(𝑛) as to their asymptotic growth rates is analogous to 

the comparison of real numbers 𝑥 and 𝑦 as to their size. 

 

𝑓(𝑛) = 𝑂(𝑔(𝑛)) is analogous to 𝑥 ≤ 𝑦 

𝑓(𝑛) = Ω(𝑔(𝑛))          ⟷  𝑥 ≥ 𝑦 

𝑓(𝑛) = Θ(𝑔(𝑛))          ⟷  𝑥 = 𝑦 

𝑓(𝑛) = 𝑜(𝑔(𝑛))          ⟷  𝑥 < 𝑦 

𝑓(𝑛) = 𝜔(𝑔(𝑛))          ⟷  𝑥 > 𝑦 

 

The analogy is quite deep.  For instance, the transitive law for ≤ (𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 implies 𝑥 ≤ 𝑧) 

corresponds to the transitive law for 𝑂.  Indeed 

 
𝑓(𝑛)

𝑔(𝑛)
≤ 𝐵1 and 

𝑔(𝑛)

ℎ(𝑛)
≤ 𝐵2 implies 

𝑓(𝑛)

ℎ(𝑛)
=

𝑓(𝑛)

𝑔(𝑛)
⋅
𝑔(𝑛)

ℎ(𝑛)
≤ 𝐵1 ⋅ 𝐵2, 

 

and therefore 𝑓(𝑛) = 𝑂(𝑔(𝑛)) and 𝑔(𝑛) = 𝑂(ℎ(𝑛)) implies 𝑓(𝑛) = 𝑂(ℎ(𝑛)).  As an exercise, the reader 

should prove that Ω, Θ, 𝑜 and 𝜔 also satisfy their respective transitive laws.   

 

Another obvious fact relates < to ≤, namely 𝑥 < 𝑦 implies 𝑥 ≤ 𝑦.  Correspondingly 𝑓(𝑛) = 𝑜(𝑔(𝑛)) 

implies 𝑓(𝑛) = 𝑂(𝑔(𝑛)).  To see this, observe that if 𝑓(𝑛)/𝑔(𝑛) → 0, then any 𝐵 > 0 satisfies 

𝑓(𝑛)/𝑔(𝑛) ≤ 𝐵 for sufficiently large 𝑛. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We leave it as an exercise for the reader to show that 𝑓(𝑛) = 𝜔(𝑔(𝑛)) implies 𝑓(𝑛) = Ω(𝑔(𝑛)).   
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Similarly, it is obvious that 𝑥 < 𝑦 implies 𝑥 ≱ 𝑦.  The analogous statement is that 𝑓(𝑛) = 𝑜(𝑔(𝑛)) implies 

𝑓(𝑛) ≠ Ω(𝑔(𝑛)).  To see this, note that 𝑓(𝑛)/𝑔(𝑛) → 0 implies that 𝑓(𝑛)/𝑔(𝑛) has no positive lower 

bound.  Show as an exercise that 𝑓(𝑛) = 𝜔(𝑔(𝑛)) implies 𝑓(𝑛) ≠ Ω(𝑔(𝑛)). 
 

Although the analogy is good, it is not perfect.  The set of real numbers satisfy the trichotomy law: given 

any 𝑥, 𝑦 ∈ ℝ, either 𝑥 < 𝑦, or 𝑥 > 𝑦, or 𝑥 = 𝑦.  Roughly stated, this says that any two real numbers are 

comparable.  However, there are asymptotic growth rates that are not comparable in any way, i.e. one can 

find functions 𝑓(𝑛), 𝑔(𝑛) for which none of the five relations 𝑂, Ω, Θ, 𝑜 or 𝜔 hold.  We leave this as a 

(difficult) exercise.  Some of the following exercises have already been proved above, but the reader should 

prove them now directly. 

 

Exercises   

(1) For any 𝛼, 𝛽 ∈ ℝ:   𝑛𝛼 = {

𝑜(𝑛𝛽)           (if  𝛼 < 𝛽)

Θ(𝑛𝛽)          (if 𝛼 = 𝛽)

𝜔(𝑛𝛽)          (if 𝛼 > 𝛽)

 

 

(2) For any 𝑎, 𝑏 ∈ ℝ with 𝑎 > 1, 𝑏 > 1:  𝑎𝑛 = {
𝑜(𝑏𝑛)           (if  𝑎 < 𝑏)

Θ(𝑏𝑛)          (if 𝑎 = 𝑏)

𝜔(𝑏𝑛)          (if 𝑎 > 𝑏)
 

 

(3) For any functions 𝑓(𝑛), 𝑔(𝑛) and 𝑐 > 0:  

{
  
 

  
 
   𝑐𝑓(𝑛) = 𝑂(𝑓(𝑛))

   𝑐𝑓(𝑛) = Ω(𝑓(𝑛))

   𝑐𝑓(𝑛) = Θ(𝑓(𝑛))

   𝑓(𝑛) = 𝑜(𝑔(𝑛))    ⟹   𝑐𝑓(𝑛) = 𝑜(𝑔(𝑛))

   𝑓(𝑛) = 𝜔(𝑔(𝑛))   ⟹   𝑐𝑓(𝑛) = 𝜔(𝑔(𝑛))

 

 

(4) For any 𝑎, 𝑏 ∈ ℝ with 𝑎 > 1, 𝑏 > 1:  log𝑏(𝑛) = Θ(log𝑎(𝑛)) 
 

(5) Let  𝐿 =  lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
  (if the limit exists).  Show that 

 

a. 0 ≤ 𝐿 < ∞  ⟹    𝑓(𝑛) = 𝑂(𝑔(𝑛))     

b. 0 < 𝐿 < ∞  ⟹    𝑓(𝑛) = Θ(𝑔(𝑛))     

c. 0 < 𝐿 ≤ ∞  ⟹    𝑓(𝑛) = Ω(𝑔(𝑛))     

d. 𝐿 = 0   ⟺    𝑓(𝑛) = 𝑜(𝑔(𝑛)) 

e. 𝐿 = ∞  ⟺    𝑓(𝑛) = 𝜔(𝑔(𝑛)) 
 

Note: the converses (⟸) to (a), (b) and (c) are false. 

 

(6) For any function 𝑓(𝑛):  𝑓(𝑛) + 𝑜(𝑓(𝑛)) = Θ(𝑓(𝑛)) 
 

(7) Rank the following functions from lowest to highest asymptotic growth rate. 

 

𝑛2,  ln(𝑛) ,   (ln(𝑛))2, ln(𝑛2) , 𝑛 ln(𝑛) , √𝑛, 𝑛√𝑛,  ln(𝑙𝑛(√𝑛)) , 2ln(𝑛), 2𝑛, 23
𝑛
, 32

𝑛
  


