
1

CSE 101

Introduction to Data Structures and Algorithms

ADTs in C++

A class in C++ is the basic program construct for implementing an ADT. It allows the programmer to

group member variables and methods into one entity. A struct in C++ is practically the same thing as a

class. It can have both methods and fields as members, it can have explicit constructors and destructors,

and can use inheritance. The main difference is that struct members are public by default, while class

members are private by default.

By contrast, a struct in C is more like an array with named elements. There are no methods within the struct

itself. For example:

Example: a struct in C

struct Blah{ // no typedef

 int foo;

 int bar;

};

.

.

struct Blah x; // so "struct" is necessary here

x.foo = 6; // initializing fields

x.bar = 7;

In practice, C++ programmers use structs only for very simple classes, with no methods beyond a

constructor or destructor.

Example: a struct in C++

struct Blah{

 int foo; // members are public by default

 int bar;

 Blah(int a, int b){ // constructor

 foo = a;

 bar = b;

 }

};

.

.

Blah x(6, 7); // calling the constructor

Example: a class in C++

class Blah{

 int foo; // members are private by default

 int bar;

 Blah(int a, int b){ // constructor

 foo = a;

2

 bar = b;

 }

 void set_foo(int a){ // another function

 foo = a;

 }

};

.

.

Blah x(6, 7); // calling the constructor

x.set_foo(8); // calling a member function

Rather than to rely on default access rules, a good practice is to explicitely separate public and private

sections of a class, by using the access modifiers public and private.

Example: a basic skeleton for a class in C++

class Blah{

private:

 // inner classes/structs

 // member variables

 // private functions

public:

 // constructor and copy constructor

 // destructor

 // member methods

 // overloaded operators

};

As in C, when we build an ADT in C++, we split the implementation into two files. File Blah.h contains

the class definition and function prototypes, and file Blah.cpp contains the function definitions.

File: Blah.h

class Blah{

private:

 // inner structs

 // member variables and helper functions

public:

 // prototypes for constructors, destructors, member methods and

 // overloaded operators

};

A class defines a namespace in C++. That namespace can be accessed from outside the class by using the

namespace resolution operator ::

3

File: Blah.cpp

// a member method implementing an ADT operation

type Blah::fcn1(..parameter list..){

 // implementation code

}

// another member method

type Blah::fcn2(..parameter list..){

 // implementation code

}

// a private member helper function

type Blah::helper_fcn1(..parameter list..){

 // code

}

// a non-member helper function

type helper_fcn2(..parameter list..){

 // code

}

.

.

There are four examples of ADT implementations posted on the webpage in Examples/C++. The Queue

and the Stack are both implemented as a linked list, and as an array. Study all of these examples carefully

before you begin pa5.

These examples illustrate new conventions for ADT implementations C++. We note these conventions

below, as they apply to the Queue implemented as a linked list.

• Node and Queue are not pointer types, but names of new object types.

• The Queue fields (other than simple types like int) are therefore pointers to Node.

• We define a QueueElement type using typedef to make it easy to change the type of the container.

• We define at least two constructors:

o a standard constructor, which may take parameters.

o a copy constructor taking a const Queue reference as input.

Be aware that constructors and destructors are almost always called implicitely in C++.

• We use the const keyword so that the compiler will flag any attempt to change an object.

A member function declared as

type fcn(.....) const;

4

cannot change the object pointed to by this (the this pointer, which refers to the object on the left

hand side of the dot (.), as in A.fcn(.....).

A member function with const in its parameter list cannot change that argument.

type fcn(..., const type& x,...);

• The new object created by the constructor is not typically created on the heap, but on the stack. The

object may manage some heap memory though. Illustrating again with the Queue example:

Client View:

Q: 3 2 1 5

 | |

 front back

Inside View:

 front back length

Q 4

 Stack Memory
--

 Heap Memory
3 2 1 5 /

• We use new and delete to allocate and deallocate heap memory. Do not use the C functions malloc,

calloc, realloc and free in C++, and never mix them with new and delete.

• The idomatically correct way to deal with precondition violations within an ADT operation is to

throw an appropriate exception. This exception carries an error message of the form

ADT: operation(): error description

The exception's member function what() can deliver this message to the client by means of the

try-catch construct. See the library header <stdexcept> for a list of built in exceptions.

• It is very common to overload operators in C++. We almost always overload the three below.

o op==(): compare for equality, as friend

o op<<(): stream insertion, as friend

o op=(): assignment, as member

The Queue and Stack examples on the webpage show how to overload the above operators. See

here for more examples of operator overloading.

https://www.programiz.com/cpp-programming/operator-overloading

