
 1

CSE 101

Introduction to Data Structures and Algorithms

ADTs and Modules in C

Introduction

This document introduces the concepts of Modules and ADTs, and describes how to implement them in

the C programming language. If you are completely new to the C language, see the following

assignments from (the now defunct) CMPS 12B which give a rapid introduction.

https://classes.soe.ucsc.edu/cmps012b/Spring19/lab3.pdf

https://classes.soe.ucsc.edu/cmps012b/Spring19/lab4.pdf

https://classes.soe.ucsc.edu/cmps012b/Spring19/lab5.pdf

Informally, an Abstract Data Type (ADT) is a collection of mathematical objects, together with some

associated operations on those objects. When an ADT is used in a program, it is usually implemented

in its own module. A module is a self-contained component of a program having a well-defined interface

that details its role and relationship to the rest of the program. Why are ADTs necessary? The built-in

data types provided by most programming languages are not powerful enough to capture the way we

think about the higher level objects in our programs. This is why most languages have a type declaration

mechanism that allows the user to create high level types as desired. Often the implementation of these

high level types gets spread throughout a program, creating complexity and confusion. Errors can occur

if the legal operations on the high level types are not well defined or are not consistently applied. The

ADT concept was developed as a way to cope with these, and other, problems related to program

complexity. See https://www.youtube.com/watch?v=qAKrMdUycb8&t=3714s for some interesting

remarks by Barbara Liskov, the inventor of the ADT concept, on the early history of programming

methodology.

Definition

An Abstract Data Type consists of two things:

(1) A set S of “mathematical structures”, the elements of which are called states.

(2) An associated set of operations which can be applied to the states in S.

Each ADT instance or object has a current state that is one of the elements of the set S. The operations

on S fall (roughly) into two categories. Manipulation procedures are operations that cause an ADT

object to change its state. Access functions are operations that return information about the state without

altering it. From time to time we will consider operations that fall into both categories, or into neither.

An ADT is an abstract mathematical object existing apart from any program or computing device. On

the other hand, ADTs are frequently implemented by a program module. We distinguish between the

mathematical ADT, and its implementation in a programming language. A single ADT may have many

different implementations, all with various advantages and disadvantages.

Example Consider an Integer Queue. In this case S is the set of all finite sequences of integers, and

the associated operations are: Enqueue(), Dequeue(), getFront(), getLength(), and isEmpty(). The

meanings of these operations are given below. One possible state for this ADT is (5, 1, -7, 2, -3, 4, 2).

(It is recommended that the reader who is unfamiliar with elementary data structures such as queues,

stacks, and lists, review sections 10.1 and 10.2 of [CLRS].)

https://classes.soe.ucsc.edu/cmps012b/Spring19/lab3.pdf
https://classes.soe.ucsc.edu/cmps012b/Spring19/lab4.pdf
https://classes.soe.ucsc.edu/cmps012b/Spring19/lab5.pdf
https://www.youtube.com/watch?v=qAKrMdUycb8&t=3714s

 2

Manipulation procedures

Enqueue() Insert a new integer at the back of the queue

Dequeue() Remove an integer from the front of the queue

Access functions

getFront() Return the integer at the front of the queue

getLength() Return the number of integers in the queue

isEmpty() Return true if length is zero, false otherwise

Other examples of mathematical structures which could form the basis for an ADT are: sets, graphs,

trees, matrices, polynomials, or finite sequences of such structures. In principle, the underlying set S

could be anything, but typically it is a set of discrete mathematical objects of some kind.

An ADT instance is always associated with a particular history of states, brought about by the application

of ADT operations. In our queue example we could have the following sequence starting with the empty

state ():

Operation State

()

Enqueue(5) (5)

Enqueue(1) (5, 1)

Enqueue(7) (5, 1, 7)

Dequeue() (1, 7)

Enqueue(3) (1, 7, 3)

getLength() (1, 7, 3)

Observe that if isEmpty() is true for some state, then getFront() and Dequeue() are undefined on that

state. One option to deal with this situation would be to make special definitions for Dequeue() and

getFront() on an empty queue. We could for instance, define getFront() to return zero on an empty

queue, and define Dequeue() to not change its state. Unfortunately, special definitions like these

complicate the ADT and can easily lead to errors. A better solution is to establish preconditions for each

operation indicating exactly when (i.e. to which states) that operation can be applied. Thus a

precondition for both getFront() and Dequeue() is: "not isEmpty()". In order for an ADT to be useful,

the user must be able to determine if the preconditions for each operation are satisfied. Good ADTs

clearly indicate all preconditions for each operation, typically as a sequence of access function calls.

ADTs may also document their postconditions, i.e. conditions which will be true after an operation is

performed. For example, a postcondition of Enqueue() is "not isEmpty()". We see that ADT operations

are analogous to mathematical functions. Preconditions and postconditions in this analogy define the

function's domain and codomain. Only when all operations have been defined, along with all relevant

preconditions and postconditions, can we say that an ADT has been fully specified.

Since we often work with multiple instances of an ADT, operations should specify which object is being

operated on. Some ADT operations may also refer to multiple objects. For instance, the Queue ADT

could have an access function called Equals() that returns true if they are in the same state, and false

otherwise. We might also have a manipulation procedure called Clear() that places a Queue object in

the empty state.

Some texts (including our own), define Dequeue() so as to return the front element, as well as to alter

the state of the Queue, making it both an access function and a manipulation procedure. In our example,

 3

Dequeue() deletes the front element but does not return it, making it a pure manipulation procedure rather

than an operation of mixed type. Such changes in the set of ADT operations result in a different ADT.

As a further example, suppose we implement our Queue by storing integers in an array of fixed size. We

should then add an access function called isFull() that returns true if there is no room left in the array for

another integer, and false otherwise. Enqueue() would then have the precondition "not isFull()". All of

these variations can legitimately be called Queues, but they are to be considered different as ADTs.

It is sometimes helpful to think of an ADT object as being a ‘black box’ equipped with a control panel

containing buttons that can be pushed (manipulation procedures), and indicator lights to be read (access

functions).

 Integer queue

 getFront getLength isEmpty

 Enqueue Dequeue

This metaphorical front panel of the black box is called the interface of the ADT. It is this interface that

defines how an ADT will interact with other parts of a program. How the interface is implemented

depends on the syntactical details the programming language.

Implementing ADTs in C

There is a straightforward way of implementing an ADT in C, once it has been specified. Many modern

programming languages (like Python, Java or C++) are in some sense, made for this purpose. The C

language however pre-dates the ADT concept, so implementing an ADT requires some effort.

A module is a part of a program that is isolated from the rest of the program by a well-defined interface.

We think of ADT modules as providing services (like functions or data types) to clients. A client is

anything (program, person, computer, another module) that uses a module’s services. These services

are said to be exported to the client or imported from the ADT module.

The module concept supports the idea of information hiding: clients have no access to the internal state

of a module, or any of its implementation details (i.e. what is inside the black box). The client can access

a module's services only through its interface. The purpose of this principle is to reduce the complexity

of the client's task by freeing it from the responsibility of knowing how an operation is performed. The

client only knows that a given operation will be performed. To a client of the Queue ADT, a Queue

object is just a sequence of integers that can be manipulated in certain ways. This modularity principle

is actually a basic concept in all engineering disciplines. No automobile requires the driver to know how

its engine works. A programmer building an ADT module should think in the same way.

ADT

Module

Client

Module

Interface

 4

An ADT implementation in C should contain a struct defining its "mathematical structure". The client

is then given a pointer (or reference) to this struct. One C function is defined for each of the ADT

operations, and each such function takes this reference as an input argument. The reference type is

defined in a way that prevents the client from following the pointer to access the interior of the "black

box", thus enforcing the information hiding principle.

In our Queue example, we choose the underlying data structure to be a singly linked list. (Other choices

are possible, such as an array.) Thus our C implementation will contain a private struct defining a Node

object. The whole thing can be pictured in memory as follows.

 Queue struct

 Queue Rererence front data

 back next

 length Node Object

 Queue Object

Two more C functions are necessary. One to create new objects (constructor) and one to free memory

associated with ADT instances no longer in use (destructor). It is the responsibility of these functions

to manage all of the memory inside the "black box", balancing calls to malloc(), calloc() and free().

The Queue ADT module is split into two files. A .h file containing typedefs and prototypes of exported

functions, and a .c file containing struct and function definitions. The module interface consists of

exactly that which appears in the .h file. Functions and types in the .c file whose prototypes do not

appear in the .h file, cannot be accessed from outside the module, and are therefore effectively private.

// Queue.h

typedef struct QueueObj* Queue;

// Constructor-Destructor

Queue newQueue(void);

void freeQueue(Queue* pQ);

// Access functions

int getFront(Queue Q);

int getLength(Queue Q);

int isEmpty(Queue Q);

// Manipulation procedures

void Enqueue(Queue Q, int data);

void Dequeue(Queue Q);

// Other functions

void printQueue(Queue Q, FILE* out);

 5

The file Queue.h defines a pointer called Queue, to a struct called QueueObj, which is not defined in this

file. The client module will #include Queue.h, so the compiler will recognize calls to the exported

functions. The client can also declare variables of type Queue and define functions that take Queue

arguments. Notice however that the client cannot dereference a Queue variable, since the struct to which

it points is not defined in Queue.h. This is how data hiding is accomplished in C. The definition of

QueueObj appears in Queue.c.

// Queue.c

#include<stdio.h>

#include<stdlib.h>

#include "Queue.h"

// private struct, not exported

typedef struct NodeObj{

 int data;

 struct NodeObj* next;

} NodeObj;

// private reference type, not exported

typedef NodeObj* Node;

Node newNode(int data) {...} // fill in

void freeNode(Node* pN) {...} // fill in

// Private QueueObj struct, constructor-destructor

typedef struct QueueObj{

 Node front;

 Node back;

 int length;

} QueueObj;

Queue newQueue(void){

 Queue Q = malloc(sizeof(QueueObj));

 Q->front = Q->back = NULL;

 Q->length = 0;

 return(Q);

}

void freeQueue(Queue* pQ) {...} // fill in

// Access functions

int getFront(Queue Q) {...} // fill in

int getLength(Queue Q) {...} // fill in

int isEmpty(Queue Q) {...} // fill in

// Manipulation procedures

void Enqueue(Queue Q, int data) {...} // fill in

void Dequeue(Queue Q) {...} // fill in

// Other functions

void printQueue(Queue Q, FILE* out) {...} // fill in

 6

Notice that the types NodeObj and Node as well as functions newNode() and freeNode(), do not

appear in the file Queue.h, and are therefore not available to the client. Exporting these items would

give the client access to the inside of the black box, violating the data hiding principle. Notice also that

another public function called printQueue() is included in both Queue.h and Queue.c. This function

prints the state of a Queue object to a FILE handle (which may be stdout.)

We have so far left aside the question of what to do if the client calls an ADT operation in such a way

as to violate one of its preconditions. We adopt the following policy in all ADT implementations.

(1) All ADT operations must state their preconditions in a comment block which appears both before

the function prototype in the .h file, and before the function definition in the .c file.

(2) All ADT operations must check that those preconditions are satisfied before proceeding with

nominal execution.

(3) If a precondition is violated, the ADT will cause the program to terminate with an error message

giving: the name of the ADT module, the name of the ADT operation, and the particular

precondition that was violated.

An ADT implementation should be fully tested in isolation before it is used in a larger program. The

following program serves this purpose.

// QueueTest.c

#include<stdio.h>

#include<stdlib.h>

#include "Queue.h"

int main(int argc, char* argv[]){

 // Call each of the above functions at least once, exercising

 // every possible logical pathway through the function, including

 // error states.

 return(EXIT_SUCCESS);

}

Exercise Complete the function definitions above by replacing empty braces { . . .} where they

appear with appropriate C code. A solution to this exercise is posted on the webpage. See the section

"Naming Conventions for ADTs in C" below before you do this exercise.

Some may (correctly) argue that our Integer Queue in C is not really a general purpose queue at all, and

we should really write a Queue of "anythings". The problem is that C’s type declaration mechanism is

not advanced enough to adequately deal with this issue. There are two possible solutions. The safer one

is to edit your Integer Queue to be a Queue of whatever you need a Queue of. Simply changing the

appropriate instances of int to the new type will create a ready-made Queue ADT. This change can be

accomplished efficiently by defining the type QueueElement in the .h file as follows.

typedef int QueueElement

 7

The type QueueElement is used to refer to the things that are stored in a Queue. This methodology lets

you change the element type by editing a single line of code. (We follow this procedure in the exercise

solution posted on the webpage.)

This simple fix has the drawback that if you want int Queues and double Queues in the same program,

then you need two different Queue modules. A more powerful (and less safe) technique is to make

QueueElement a generic pointer, by doing

typedef void* QueueElement

Now the Queue module can handle Queues holding any kind of pointer. The danger here is that a client

might get confused and call getFront() or Enqueue() on the wrong kind of pointer. Using void*

means that you will not find out about this problem until you run the client program and get a

segmentation fault. These types of pointer errors can be very difficult to debug. Given these warnings,

I would recommend the safer solution for those students who are new to C.

Naming Conventions for ADTs in C

Suppose you wish to implement an ADT in C. The particular ADT is unimportant, so let’s just call it a

“Blah”. You should create the following files at minimum: Blah.c, Blah.h, BlahTest.c. The file Blah.c

represents the ‘inside’ of the black box, Blah.h represents the interface, and BlahTest.c is a kind of

dummy client module or test harness used to wring the bugs out of the Blah ADT.

File Blah.h will contain prototypes for all exported ADT operations. It will also contain the line.

typedef struct BlahObj* Blah;

This defines Blah to be a pointer to some struct called BlahObj. Blah.c will #include Blah.h, and

will contain definitions of all exported functions, as well as definitions of private functions and structs

as well. Blah.c will also contain the following typedef statement.

typedef struct BlahObj{

 // code that defines fields for the Blah ADT

} BlahObj;

A client module can then #include Blah.h giving it the ability to declare variables of type Blah, as

well as functions that take Blah parameters. However, the client cannot dereference a Blah, since the

object it points to is not defined in Blah.h. The ADT operations take Blah arguments, so the client does

not need to (and is in fact unable to) directly access the struct these references point to. Therefore the

client can interact with a Blah object only through the exported ADT operations, thereby enforcing the

information hiding principle.

Blah.c also contains a constructor:

Blah newBlah(...){

 Blah B;

 // code that initializes B in heap memory

 return(B);

}

 8

and a destructor

void freeBlah(Blah* pB){

 if(pB!=NULL && *pB!=NULL){

 // free all heap memory associated with *pB

 free(*pB);

 *pB = NULL;

 }

}

Notice that the destructor is defined in a strange way. It’s argument is not a Blah, but a pointer to a

Blah (i.e. a pointer to a pointer to BlahObj.) Therefore the destructor is called by passing the address

of a Blah reference. Each Blah object is explicitly created and destroyed as follows.

Blah B = newBlah(...);

// do something with B

freeBlah(&B);

Function freeBlah() must be defined in this way (i.e. taking a pointer to a Blah reference rather than

a simple Blah reference) since it is the one ADT operation that changes the Blah reference itself (in

addition to the BlahObj it points to) by setting it to NULL.

Recall that all ADT operations must check their own preconditions and exit with a useful error message

when one of them is violated. The error message should state the module in which the error occurred

(i.e. Blah), the operation in which it occurred, and exactly which precondition was violated. The purpose

of this message is to provide diagnostic assistance to whoever is programming a client of the Blah ADT.

In this course that person is of course you the student, but in a the real world, it may well be another

programmer, so you must make the error message as helpful as possible.

In the C language however, each ADT operation has at least one precondition that should be checked

before all others, namely that its main reference argument is not NULL. This check must come first

since any attempt to dereference a NULL pointer will result in a segmentation fault.

void some_op(Blah B){

 if(B==NULL){

 printf(“Blah Error: calling some_op on NULL Blah reference”);

 exit(EXIT_FAILURE);

 }

 // check other preconditions

 // proceed with nominal execution

}

In some other programming classes you may have used names like BlahHndl, BlahRef or BlahPtr

instead of just Blah. We have chosen this convention in order to emulate the syntax of other OOP

languages (like Python) as closely as possible. Obviously one name is not intrinsically better than

another, but for the sake of consistency, you are required to adhere to the naming conventions outlined

here. In particular the file names Blah.c, Blah.h, BlahTest.c; the function names newBlah(),

freeBlah(), printBlah(); and the type names BlahObj, and Blah are not open to modification.

