
Automating Failure Testing Research at Internet Scale

Peter Alvaro1 Kolton Andrus2 Ali Basiri3 Lorin Hochstein3 Casey Rosenthal3 Chris Sanden3

1UC Santa Cruz 2Gremlin, Inc. (formerly Netflix, Inc) 3Netflix, Inc

Submission Type: Experience

Abstract

Large-scale distributed systems must be built to anticipate
and mitigate a variety of hardware and software failures.
In order to build confidence that fault-tolerant systems are
correctly implemented, Netflix (and similar enterprises)
regularly run “failure drills” in which faults are deliber-
ately injected in their production system. Existing failure
testing approaches either explore the space of potential
failures randomly or exploit the “hunches” of domain ex-
perts to guide the search—the combinatorial space of fail-
ure scenarios is too large to explore exhaustively. Random
strategies waste resources testing “uninteresting” faults,
while programmer-guided approaches are only as good as
the intuition of a programmer and only scale with human
effort.

In this paper, we describe how we adapted and imple-
mented a research prototype called lineage-driven fault
injection (LDFI) to automate failure testing at Netflix.
Along the way, we describe the challenges that arose
adapting the LDFI model to the complex and dynamic re-
alities of the Netflix architecture. We show how we imple-
mented the adapted algorithm as a service atop the exist-
ing tracing and fault injection infrastructure, and present
preliminary results.

1 Introduction

Netflix and similar enterprises operate at a scale at which
failures such as machine crashes and network partitions
are the rule. In order to provide an “always on” experience
to customers, software for Internet-scale companies must
be be written to anticipate and work around a variety of
error conditions that are unlikely to arise except at large
scale. It is difficult to ensure that such fault-tolerant code
is adequately tested, because there are so many ways that
a large-scale distributed system can fail.

The practice of Chaos Engineering [6]—which
emerged as a discipline to tackle resilience of these large-
scale distributed systems—is on the rise [29, 23]. For-
mally, Chaos Engineering is defined as “experimenting
on a distributed system in order to build confidence in the

system’s capability to withstand turbulent conditions in
production.” Engineers create frameworks that automate
failure injection, usually on live traffic. Emerging work-
shops such as Chaos Community Day [1]—in which top
Internet companies share experience designing and im-
plementing chaos experiments to improve the resilience
of their systems at scale—underscore the growth of this
trend.

Chaos engineering reflects a cultural trend within the
software industry away from coordinated design and ar-
chitecture, monolithic applications, and top-down engi-
neering toward coordination of API boundaries, microser-
vice architectures, and flattened engineering hierarchies.
As the complexity of these loosely coupled architectures
increases, reliance on automated tooling to provide end-
to-end tests for business-critical assumptions about the
system becomes unavoidable. Confidence in the system’s
behavior should be manufactured by experimenting with
worst-case failure scenarios in the production, scaled-out
system.

Building a production fault injection infrastructure
is only the first step towards maintaining fault-tolerant
systems. The space of distinct failure scenarios—
combinations of faults across a distributed system—that
such an infrastructure can test is exponential in the num-
ber of potential faults. Exhaustive search is intractable;
the fault injection infrastructure must choose a search
strategy to explore this massive space of possible execu-
tions. To the best of our knowledge, all current failure
testing solutions use one or both of the following strate-
gies:

1. Random search, in which the fault injection infras-
tructure chooses failure scenarios arbitrarily. The
principal advantages of random search are its sim-
plicity and generality. However, random strate-
gies are unlikely to discover “deep” failures involv-
ing combinations of different instances and kinds of
faults. They also waste resources and time by explor-
ing failure scenarios that are redundant, or that could
be proven to be incapable of triggering a user-visible
error.

2. Programmer-guided search, which leverages the in-

1

tuition of domain experts to guide the search through
failure scenarios. In a microservice architecture
like that of Netflix, individual services are owned
by small engineering teams. Within each team,
component-specific domain expertise can be ex-
ploited to generate local heuristics. This approach
has the advantage that by prioritizing certain “deep”
paths through the space of failures, it can drive
the search into unlikely but severe corner cases for
the given component. Unfortunately, programmer-
guided search is fundamentally unscalable, because
every component requires a domain expert to invest
their time to encode their expertise in a search heuris-
tic.

Imagine if we had perfect information that allowed us
to understand exactly how systems like the Netflix back-
end produce “good outcomes” (for example, by provid-
ing a satisfactory response to user requests). We could
then transform the very open-ended question “could a
bad thing ever happen?” into a set of narrower and
more targeted questions: “how did this good thing happen
(and what could have gone wrong along the way)?” Be-
cause (by assumption) fault-tolerant systems employ re-
dundancy in various forms to guard against failures, the
answer to this “how” question will often reveal a variety
of alternative computations that can produce the good out-
come. These in turn can help us to prune the space of
fault injection executions that we need to consider. This
approach to automatically driving a fault injection infras-
tructure is called lineage-driven fault injection (LDFI) [5].

In this paper, we explain how we implemented LDFI as
a snap-in microservice in the Netflix infrastructure, lever-
aging the existing tracing and fault injection services. We
describe the challenges that arose adapting the idealized
model of the research prototype to the rigid and imperfect
realities of a large-scale distributed system, and how we
overcame them.

The paper is organized in the following way. Section 2
presents the LDFI approach and its embodiment in the
initial research prototype. Section 3 describes the failure
testing infrastructure at Netflix as it existed when we be-
gan the project. Section 4 details the challenges that arose
implementing a production version of LDFI; Section 5
takes each problem in turn and shows how we solved it.
We present some preliminary results in Section 6, and
close with a discussion of related work (Section 7) and
lessons learned (Section 8).

2 Lineage-driven fault injection
Lineage-driven fault injection (LDFI) is a technique for
guiding the search through possible fault injection scenar-
ios [5]. The LDFI prototype system (called Molly) takes

as input a distributed program written in an Dedalus [4]
(an executable specification language based on Datalog),
a correctness specification, program inputs and bounds on
execution length, and simulates the program’s distributed
executions under a variety of faults. Execution of Molly
terminates in one of two cases:

1. A violation of the invariants described in the specifi-
cation is found. Molly then returns a trace visualiza-
tion of the execution, along with the faults that drove
the system into an invalid state. Programmers can
use this visualization to identify the root cause of the
bug.

2. Molly exhausts the execution bounds without discov-
ering an invariant violation. In this case, the submit-
ted program is “certified” as free from fault-tolerance
bugs given the execution bounds and program inputs.

The LDFI approach is based on two key insights. The
first is that fault-tolerance is redundancy—a program or
system is fault-tolerant precisely if it provides enough al-
ternative ways to obtain an expected outcome that it is
resilient to some pre-defined set of fault conditions. If we
had perfect information about all of the alternative compu-
tations a system provides, we could determine what faults
it can tolerate—or conversely, identify failure scenarios
that could prevent it from succeeding. The second insight
is that instead of starting from initial states and exhaus-
tively searching the space of possible executions, a bet-
ter strategy for quickly identifying fault-tolerance bugs is
to start with successful outcomes and reason backwards,
from effects to causes, in order to understand whether
some combination of faults could have prevented the out-
come.

2.1 Lineage

LDFI uses data lineage [7, 9] to simultaneously exploit
both insights. It begins with a correct outcome, and asks
why the system produced it. This recursive process of
asking why questions (which we illustrate below) yields
a lineage graph that characterizes all of the computations
and data that contributed to the outcome. By doing so, it
reveals the system’s implicit redundancy by capturing the
various alternative computations that could produce the
good result.

For example, a correctness property for a distributed
storage system might require that “all acknowledged
writes are durably stored.” Hence an execution in which
a write is durably stored is a witness to the correctness
property. Working backwards from this good outcome,
we ask why the write was durable. Since the storage sys-
tem used replication to guard against node failure, there

2

are multiple reasons why the write is durable: namely, be-
cause it is stored on some replica RepA and because it
is stored on RepB. We continue to recursively ask why
questions: e.g., the write is stored on RepA for multi-
ple reasons, because the client made multiple broadcast
attempts. When we finish “unrolling” the explanation of
why the write is durable, we end up with a lineage graph
like the one shown in Figure 1.

LDFI must now reason about whether any combina-
tion of faults could prevent that good outcome from oc-
curring. A naive pass of the lineage graph tells us that
the set of contributing events that could fail is E ≡
{RepA,RepB,Bcast1, Bcast2}. Hence the space of
possible combinations of faults that we could explore is
2E—the power set of E, containing 16 elements. How-
ever, closer inspection of the graph reveals that not ev-
ery element of 2E is interesting. For example, an execu-
tion in which faults are injected in RepA and Bcast1 is
uninteresting, because we already know that even under
those faults the system can produce the good outcome via
Bcast2 and RepB.

2.2 Boolean encoding and solving

We can make this reasoning more formal by extracting
from the lineage graph the set of distinct paths from leaves
to root; each path corresponds to an alternative computa-
tion that is sufficient to produce the outcome. Within each
path, the failure of any node invalidates the whole path.
Consider the path from the Client to the root that tran-
sits RepA and Bcast1. It required RepA and Bcast1 to
succeed; hence failing either is sufficient to invalidate the
computation. We can encode the conditions under which
this computation could fail as a disjunction of proposi-
tional variables:

(RepA ∨Bcast1)

Preventing the good outcome, however, would require
us to find a combination of failures that invalidates all of
the alternative computations. We can encode this as a con-
junction of disjunctions of propositional variables (i.e., a
formula in conjunctive normal form):

(RepA ∨Bcast1)

∧ (RepA ∨Bcast2)

∧ (RepB ∨Bcast1)

∧ (RepB ∨Bcast2)

The solutions to this boolean formula represent sets of
faults that we should test via fault injection. In particular,
we are interested in the minimal solutions—those that do

The write
is stable

Stored on
RepA

Stored on
RepB

Bcast2

Client Client

Bcast1

Figure 1: A simple lineage graph

not contain other solutions. These are:

{RepA,RepB},
{Bcast1, Bcast2}

2.3 Alternating execution
A fault-tolerant program should, in the presence of faults
such as component failure and message loss, attempt
to achieve its expected outcome via some other means.
Hence a solution to the formula described above does not
necessarily indicate a bug, but rather a hypothesis that
must be tested via fault injection.

By injecting a set of faults corresponding to a solution
to the Boolean formula, the fault injection framework will
produce one of two outcomes:

1. The system fails to produce the expected outcome,
indicating a fault-tolerance bug. Execution termi-
nates, and the user is presented with a visualization
of the lineage graphs.

2. The system succeeds in producing the expected out-
come. This indicates that it has revealed an alterna-
tive strategy for obtaining the outcome. The lineage
graph from this execution should be merged with the
current one, and a new formula should be extracted
and solved.

In this way, LDFI alternates between concrete execu-
tions and symbolic solving until either a bug is discovered
or the formula is determined to be unsatisfiable. In the
latter case, LDFI “certifies” the system as free from fault-
tolerance bugs for the given configuration and input.

The basic system architecture of LDFI is depicted in
Figure 2. The system is seeded with a successful outcome.

3

2. Lineage 3. CNF

Fail1. Success

Why?

Encode

Solve

4. REPEAT

Figure 2: Overview of LDFI.

Recursively asking “why” questions about how the system
obtained that outcome yields a lineage graph. This lin-
eage graph is encoded into a Boolean formula that is then
solved to generate failure hypotheses, each of which is
tested via a sequence of replays of the initial execution in
which faults corresponding to the hypothesis are injected.
This process is repeated until either a fault tolerance bug
is identified or the system exhausts its hypotheses.

3 Failure Testing at Netflix

FIT, “Failure Injection Testing,” is a platform within Net-
flix that simplifies fault-injection with a high degree of
precision for what component is failed and which user re-
quests will be impacted. FIT also allows the propagation
of failures across the Netflix microservice architecture in
a consistent and controlled manner.

3.1 Failure Scope

The Failure Scope is the potential impact that a failure
test, or experiment, could have. This is measured in terms
of customer impact, from a single customer to all incom-
ing traffic; the service impact, from a single host or ser-
vice to all hosts; or other attributes of the incoming re-
quest. Deliberately causing failures in production is a po-
tentially risky strategy; the failure scope of an experiment
keeps users of FIT mindful of the external consequences
of a failure drill by understanding its potential “blast ra-
dius.”

Simulating failure begins when the FIT service pushes
failure simulation metadata to the proxy server, Zuul, as
shown in Figure 3. Requests matching the “failure scope”
are decorated with metadata describing a particular failure
scenario. The metadata may describe an added delay to a

Internet

Zuul

API

RecommendationsSubscriber

FIT Service

Failure Metadata
aysnc update from control plane

Request Context
failure details

travel with request

Failure Scope
apply to targeted requests

Failing Subscriber

Network Calls

Simulated Failures

Injection Points

Hystrix

Ribbon

Figure 3: A a simulated failure, demonstrating inflections
points where failure can be injected.

service call, or remote service call failure. Each “injection
point” with which a request interacts checks the request to
determine if there is a failure for that specific component.
If found, the injection point simulates that failure appro-
priately.

3.2 Injection Points
The Netflix infrastructure provides developers with sev-
eral key “building block” components:

1. Hystrix is used to isolate failures and to define fall-
backs.

2. Ribbon is used to communicate with remote ser-
vices.

3. EVCache provides access to cached data stored in
Memcached [14].

4. Astyanax provides interfaces for durable storage of
data in Cassandra [21].

Each of these layers defines an inflection point at which
is is possible to inject simulated failures. These layers in-
terface with the FIT context to determine if a given request
should be impacted. The failure behavior is provided to
the appropriate layer, which then individually determines

4

how to emulate that failure in a realistic fashion: e.g. sleep
for a delay period, return a 500, throw an exception, etc.

3.3 Failure Scenarios
Whether recreating a past outage or proactively testing the
loss of a dependency, the failure testing service needs to
know what could fail. Netflix leverages an internal tracing
system (similar to Dapper [28]) that provides the ability to
trace requests through their interactions with distributed
services and find all of the injection points along the path.
These are then used to create failure scenarios—sets of
injection points into which faults can be injected in the
same execution. A commonly exercised scenario is the
set of “critical services” representing the minimum set of
services required to stream video.

4 Challenges
LDFI has been shown to be effective at discovering bugs
related to fault-tolerance in low-level, “classic” protocols
(e.g. three-phase commit) as well as modern infrastruc-
ture (e.g. Kafka), using orders of magnitude fewer execu-
tions than random fault injection [5]. This made it an at-
tractive alternative to the brute-force and engineer driven
methods used to drive the failure testing infrastructure at
Netflix. Unfortunately, several limitations of the proto-
type made it unsuitable for use in its current form.

In this section, we describe the assumptions and re-
quirements of the LDFI prototype that were practical bar-
riers to its deployment. In the subsequent section, we de-
tail how we overcame these limitations in the production
implementation.

4.1 Language
The Molly prototype requires that distributed systems
be implemented in the Dedalus language. The reasons
for this restriction are largely historical. The research
team that developed LDFI intended for it to provide tool
support for Bloom [3], whose semantics are based on
Dedalus. Rule-based languages such as Dedalus also
make it trivial to collect fine-grained data lineage during
execution.

While it is not uncommon for verification systems
to require that programs be specified in a custom lan-
guage [17, 33], this requirement was not acceptable at
Netflix. First, there were simply too many applications
to port to Dedalus. Moreover, because Netflix executes
sandboxed code provided by partners, the source code of
applications is sometimes unavailable.

As a consequence, we had to look for another source of
lineage data beyond the program text.

API Service

Ratings Service Playlist Service

Playlist EVCache

API

Hystrix_GetRatings Hystrix_GetPlaylist EVCache_Playlist

Ribbon_Ratings

Ratings

Ribbon_Playlist

Playlist

Playlist_Cache

Figure 4: A decorated call graph generated describing the
services that participated in servicing a user request. The
boxes represent Netflix services, while the oval nodes rep-
resent potential fault injection points identified by FIT.

4.2 Lineage: granularity and redundancy

Fortunately, the tracing service described in Section 3.2
records service interactions as call graphs. A call graph
is shown in Figure 4. At a high level (and at a glance),
such a trace resembles a lineage graph. It describes how
the API tier (the root of the graph) responded to a client
request; every service that was required to satisfy that re-
quest is represented in the graph. To a first approxima-
tion, call graphs differ from the rich lineage structures
that could be generated from Dedalus executions princi-
pally in their granularity. That is to say, a call graph
characterizes how a collection of services contributed to a
system outcome, while LDFI’s data lineage characterized
how individual data elements and fine-grained computa-
tion steps contributed to an outcome. Because we were
willing to sacrifice some precision in order to improve the
performance of automated failure testing, it seemed that
call graphs could stand in for lineage, freeing us from the
dependency on Dedalus as an implementation language.

Recall, however, that LDFI (as described in Section 2)
aggressively pruned the space of executions it needed
to explore using fault injection by considering explicit
redundancy, which was revealed in individual graphs
like the one shown in Figure 1. Call graphs such as the
one shown in Figure 4 capture no redundancy. In fact,
if we were to apply the LDFI approach naively to that
call graph, we would need to explore the power set of
{API,Ratings,Playlist,Playlist Cache},
yielding the brute force search strategy described in
Section 3.

Of course, a site such as Netflix cannot provide high
availability and low latency for user requests without
utilizing redundancy in a variety of forms, including
caching, active replication, and automatic as well as
operator-assisted failover. These forms of implicit re-

5

dundancy are not explicitly revealed in the call graph
structure—hence our challenge was to identify and reify
them into our model.

4.3 Identifying successful outcomes
As we discussed in Section 2, LDFI works backwards
from a successful system outcome in order to explore the
space of faults that could have prevented it. In the pro-
totype, a successful outcome was merely a data item; a
record in a table.

The aforementioned heterogeneity of the applications
running in the Netflix ecosystem made it challenging to
identify an appropriately general measure of success for
individual service interactions. Because Netflix presents a
REST API to external clients, we explored the possibility
of using the HTTP response code as an indication of the
success of the overall interaction. Unfortunately, differ-
ent applications use the return code inconsistently. It was
not uncommon for API calls that produce a client-visible
error to nevertheless return a successful status code (“200
OK”).

4.4 Replayability
As Figure 1 indicates, LDFI requires individual interac-
tions with a distributed system to be replayable. This is
unavoidable; not all hypotheses generated by the solver
will produce a user visible error, so to ensure that bug
identification is sound each hypothesis must be tested via
fault injection.

Netflix does not have a production-scale testing envi-
ronment in which to carry out speculative replay of ser-
vice interactions. As we described in Section 3, all failure
testing is carried out in production using real user traffic.

We explored the possibility of recording user-generated
interactions and their traces, and later replaying them to
test different failure hypotheses directly in the production
environment. Unfortunately, the dynamic nature of the
microservice architecture at Netflix made this approach
impossible. First, the internal state of individual services
is constantly changing as a consequence of both asyn-
chronous updates and user interactions. Worse still, due
to software releases the versions of various services can
change at any time—there is no notion of a “consistent
cut” of system-wide software versions, as each microser-
vice evolves independently. Finally, because user inter-
actions with the services are not necessarily idempotent,
replay itself may effect the internal state of services.

5 Solutions
In this section we address each of the challenges enumer-
ated in Section 4 in turn. While we sought to preserve the

spirit and simplicity of the LDFI approach as much as pos-
sible, we had limited flexibility with respect to changing
details of the Netflix production infrastructure. As a con-
sequence, we often found ourselves adapting the idealized
model of LDFI to the “ugly” realities of the existing sys-
tem, rather than trying to “boil the ocean” by making the
system more closely resemble the model. Luckily, with
a bit of creativity and a great deal of flexibility we suc-
ceeded in overcoming each of the challenges. We hope
that the solutions we describe will prove useful for future
adaptations of LDFI to production infrastructure.

5.1 Measuring Success
What does “success” mean in real life? In a production
system, it has a real and specific meaning: did the sys-
tem work correctly for the customer? For the typical cus-
tomer interaction with Netflix, this means the ability to
browse the catalog, view video details, and stream the
video. These interactions occur both within web browsers
and on devices (such as the Xbox, Playstation, etc). We
capture and report back metrics about these (and other)
key customer interactions in order to gain insight into the
customer experience. From these “Device-Reported Met-
rics” we are able to determine whether the customer saw
an error or had a successful interaction.

We tap into a stream of these device-reported metrics
in order to capture the error information related to cus-
tomer requests that were decorated with failure. We ei-
ther store “success”, or meta-information about the error
(useful for later debugging). For each experiment run, we
impact several requests so that we can filter out potential
false positives. We only mark an experiment as finding a
bug if greater than 75 (percent) of the requests result in
a failure. Additionally, we ensure that the desired failure
actually occurred (as in our non-deterministic world, not
every interaction will execute in the same manner).

Lastly, we encountered some scenarios in which no
data would be captured from the device-reported metrics
for a given experiment. After some debugging, we found
that certain injected failures broke not just their request,
but the mechanism for reporting errors as well. There-
fore we treat a lack of device reported metrics as a failure.
This may not be a true failure (i.e. if someone pushes
bad code which prevents capturing device reported met-
rics, etc), but we would rather investigate it as if it were a
real failure than ignore it.

5.2 Replay
The LDFI methodology requires that requests be replayed
in order to test different failure hypotheses, but the Netflix
infrastructure provided no practical replay capacity. To
circumvent this obstacle, we simulate replay by treating

6

all user requests that cause the same back-end behavior
as if they were replays of a single, canonical request. This
required us to define a finite set of equivalence classes rep-
resenting distinct interactions with the services provided
by Netflix, and, for each user request, to predict the class
to which it belongs. This section describes how we for-
mulated and solved these problems.

5.2.1 Request Classes

All user requests are unique, but intuitively there are only
a finite set of distinct service interactions that a request
could stimulate. Before we could tackle the problem of
predicting class membership for user requests, we had to
enumerate this set of abstract “interactions.” More for-
mally, user traffic provides an infinite set of requests R,
and Netflix’s tracing infrastructure provides a function
trace : R → T , where T is a (possibly infinite) set
of concrete traces. We needed to define an equivalence
relation ∼ that gives rise to a set of request classes

C ≡ { {x ∈ T |x ∼ t} |t ∈ T} (3)

We want to choose ∼ in such a way that the cardinality
of C is finite and manageable, but large enough that it
captures the variety of interactions that are possible for
users of the system. Critically, we had to ensure that for
any two requests r and r′, trace(r) ∼ trace(r′) if and
only if any combination of failures that prevents r from
returning a valid response also prevents r′. Informally,
two requests are similar if the interactions they cause are
sensitive to the same faults.

As we discussed in Section 4.2, call graphs can be eas-
ily generated from system traces. Call graphs provide
a useful abstraction over the “interactions” that occur as
a consequence of user requests: they record which ser-
vices (drawn from a finite set S) participated in provid-
ing a response to the user. The structure of a call graph
also records dependency information (i.e., which services
were clients and which were servers in directed acyclic
graph of API calls) that wasn’t required for our purposes.
As a trivial example, the services {A,B,C} could par-
ticipate in a variety of different graphs, but the distinc-
tions between these graphs are uninteresting because any
faults that affect A,B or C could affect the user-visible
response generated by any of the interactions. We write
callgraph(r) to denote the call graph produced by re-
quest r in a fault-free execution, which we can ascertain
directly from system traces because they record both re-
quests and the generated call graphs. Given a call graph
g = (V,E), we write nodes(g) to denote the set of
graph nodes V ⊆ S.

Define a function

interaction ≡ nodes ◦ callgraph ◦ trace (4)

Note that interaction : R → 2S—that is,
interaction is a function from requests to sets of ser-
vices. Then we define ∼ as

∀r, r′ ∈ R r ∼ r′ ⇐⇒
interaction(r) = interaction(r′) (5)

Intuitively, two requests belong in the same class if they
“light up” the same set of services. Note that we assumed
trace to be a deterministic function. This is not always
the case in practice: call graphs can record a number of
non-deterministic effects such as cache misses. We de-
scribe below how we work around this difficulty.

5.2.2 Learning Mappings

Because the function trace is effectively implemented
by the Netflix production infrastructure, it is not available
at the time a request arrives at Zuul. Hence as a surro-
gate for interaction (which depends upon trace)
we must learn a function f : R→ 2S—that is, a function
which, given information known at the time a user request
is admitted into the system, predicts the unique set of ser-
vices that will participate in serving the request. Given a
request r ∈ R, we write attrs(r) to denote its set of
attributes, such as its URI, device type and query string
parameters. Due to the possible run-time nondeterminism
of trace described above, we model f as a partial func-
tion: it produces a defined value only when the classifier
predicts a request class with high confidence.

To learn f , we pose a supervised learning problem. Our
training input is drawn from the set of production traces,
each entry of which associates a request r ∈ R with a
trace t ∈ T (essentially providing information about how
the infrastructure implements trace via input/output ex-
amples). The features are drawn from request attributes:
F ⊆ attrs(r).

We explored two formulations of the classification
problem. First, we canonicalized elements of 2S by sort-
ing them lexicographically and combining them into a
large string, and posing a single-label classification prob-
lem to predict that string for each request. We also inves-
tigated posing a multi-label classification problem [30], in
which each element e ∈ 2S is treated as a label and the
classifier attempts to predict sets of labels for each input.
In the end, we used the single-label classifier for the first
release of the LDFI service, but are continuing to investi-
gate the multi-label formulation.

5.3 Lineage
By definition, a fault tolerant system provides multiple
alternative computations that can achieve its expected
outcomes—it is precisely by doing so that it can mask

7

faults that occur during execution. LDFI uses data lin-
eage to reason explicitly about the redundancy provided
by a system, in order to aggressively prune the space of
executions that it must consider. However, as we saw in
Section 4.2, the tracing infrastructure used by Netflix does
not directly expose this redundancy in call graphs. Intu-
itively, however, we know that redundancy exists in the
Netflix backend; the challenge was to make it explicit.

Our solution was to have LDFI learn about the various
alternative computations provided by the site for a par-
ticular class of user requests over time. Recall that Sec-
tion 5.2 described a mechanism for simulating the replay
of user-generated interactions by grouping requests into
equivalence classes and treating all requests that map into
a particular class as though they are replays of a single
user interaction. It occurred to us that we could take ad-
vantage of this replay mechanism to incrementally build
a model of the variety of alternative ways that a particular
request class can provide a satisfactory response.

For example, Figure 4 (as we discussed in Section 4.2)
reveals no redundancy: it simply describes the interac-
tion between the services that were used to generate a re-
sponse to a particular user request that mapped into that
class. Based on an analysis of this callgraph alone, it
might appear that if the node hosting the ratings service
were to crash, the entire request might fail. A Netflix
site reliability engineer, on the other hand, might know
that in such an event, the API service would fail over
to a RatingsFallback service that provides (possi-
bly state) ratings information in order to allow the client
response to be generated with acceptable defaults. This
alternative computation is missing from the graph, for an
obvious reason: the fallback code was not executed ser-
vicing the original user request.

However, if our automated failure testing system were
to generate a hypothesis that failing RatingsService
could cause a user-visible error, and then tested that hy-
pothesis via fault injection, in a subsequent “replay” (i.e.,
the next user request that maps to the same class) the sys-
tem would succeed and generate a slight different request
graph (e.g., one in which the RatingsService node
was replaced by a RatingsFallback node). Collec-
tively, these graphs explicitly capture the redundancy in
this system, which (continuing this process) will be incre-
mentally revealed over time.

By maintaining long-lived models of these alternative
computations provided by each request class, we were
able to capture both the dependencies within individual
computations and the redundancy across them. We used
this structure to stand in for the lineage graph described in
Section 2.

6 Results

In this section, we begin by briefly describing the LDFI
service that we implemented at Netflix. We then present a
case study in which we describe details of how the LDFI
service explored a particular request class (called App
Boot), and the fault tolerance bugs it identified.

6.1 Implementation

Having addressed the challenges described in Section 4,
we implemented LDFI as a service that interposes be-
tween the tracing service and FIT.

For each request class (as described in Section 5.2),
the LDFI service maintains a model of the alternative
computations that are sufficient to produce a satisfac-
tory response for requests that fall within the class. This
model—the substitute for fine-grained lineage that we
presented in Section 5.3—is enriched over time as de-
scribed below; at any given time, the model can be
thought of as the conjunction of the various call graphs
that were produced by experimenting with different fault
scenarios. Given such a model, LDFI can produce a set
of hypotheses by representing the known alternatives as a
Boolean formula and solving, as described in Section 2.

The LDFI service is driven by a daemon that periodi-
cally spawns three types of jobs:

1. Training: the service collects production traces from
the tracing infrastructure and uses them to build a
classifier (as described in Section 5.2) that deter-
mines, given a user request, to which request class it
belongs. We found that the most predictive features
include service URI, device type, and a variety of
query string parameters including parameters passed
to the Falcor [11] data platform.

2. Model enrichment: the service also uses production
traces generated by experiments (fault injection exer-
cises that test prior hypotheses produced by LDFI) to
update its internal model of alternatives. Intuitively,
if an experiment failed to produce a user-visible er-
ror, then the call graph generated by that execution is
evidence of an alternative computation not yet repre-
sented in the model, so it must be added. Doing so
will effectively prune the space of future hypotheses.

3. Experiments: finally, the service occasionally “in-
stalls” a new set of experiments on Zuul. This re-
quires providing Zuul with an up-to-date classifier
and the current set of failure hypotheses for each ac-
tive request class. Zuul will then (for a small fraction
of user requests) consult the classifier and appropri-
ately decorate user requests with fault metadata.

8

At any time, administrators may query the LDFI service
to obtain information about user-visible failures that have
been uncovered, the current state of lineage models for the
active request classes, and the current failure hypotheses
that will be tested in the next experiment.

6.2 Case study: App Boot

Hypothesis:

EC_MAP_LT

APIPROXY

API

EC_AB EC_YELLOW2 ABCLOUD YELLOW2 EC_SUB

Figure 5: A simplified example of a failure-free run of
App Boot. Most of the data required to satisfy the request
is obtained from the EVCache tier (nodes with the prefix
“EC ”). A failure hypothesis (crash EC MAP LT) gener-
ated by LDFI after processing the graph is highlighted.

In this section we focus on one of the most critical in-
teractions users have with the Netflix site: a particular re-
quest class that Netflix developers colloquially refer to as
“App Boot.” This interaction loads the metadata needed
to run the Netflix application and load the initial list of
videos for a member. App Boot represents a moment of
truth that, as a company, we want to win by providing a
reliable experience from the very start.

It is also a very complex request, touching dozens of in-
ternal services and hundreds of potential failure points. A
complete (but too dense to read) call graph for App Boot
is shown in Figure 6. Brute force exploration of this space
would require roughly 2100 experiments.

Figure 5 shows a simplified call graph produced by a
failure-free initial run of the App Boot request class. Note
that in order to make the graphs readable, we display them
at a courser grain than the example graph we showed in
Figure 4. In Figures 5 and 7, services (boxes in Figure 4)
are shown as graph nodes (ovals), while individual fault
injection points (ovals in Figure 4) are not shown.

Figure 5 also highlights a failure hypothesis generated
by LDFI after processing the graph: causing a fault in the
EC MAP LT service could prevent the App Boot interac-
tion from providing a useful response to the user. At some
future time, the LDFI service propagated the details nec-
essary to test this hypothesis via FIT. Some time after that,
a user request arrived that the classifier mapped into the
App Boot request class. Zuul decorated the user request
with the appropriate failure scenario metadata, triggering
the appropriate downstream faults.

However, that experiment failed to produce a user-
visible error. Instead, it logged a new call graph, shown
in Figure 7. Note first that the EC MAP LT service does
not appear as a node in this call graph, because the service
was crashed by the FIT infrastructure. In its place, how-
ever, a new subgraph has “grown” (shown in a box). The
EC MAP LT cache service materializes the results from
a collection of service calls that are required to compile
the “LOLOMO” (or list-of-lists-of-movies) that is pre-
sented to users after logging in to the Netflix service. Be-
cause the cache was unavailable, the API tier called the
MAPLOLOMO service as a fallback. It, in turn, called
the services required to compile the LOLOMO, includ-
ing the GROUP SERVICE, GPS SERVICE and several
lower-level caches.

The EC MAP LT service and the subgraph that replaced
it in Figure 7 represent alternative computations provided
by the Netflix backend that are individually sufficient to
produce a satisfactory user response for the App Boot
request class. Armed with this additional knowledge
about fallbacks, LDFI will never again explore scenar-
ios in which faults are injected in EC MAP LT without
also injecting faults in some node in the new subgraph
(e.g. GPS FRONTEND). Every time the service spends re-
sources and time running a failure experiment, the results
of the experiment either uncover a bug or prune the space
of future experiments.

LDFI covered the space of failure scenarios for App
Boot after running just under 200 experiments—a minis-
cule subset of the 2100 potential failure scenarios into
which random strategy would “stab.” Along the way, it
discovered 11 new critical failures that could prevent users
from streaming content, several of which involved “deep”
failure scenarios involving a combination of service fault
events.

7 Related Work

Fault injection is a relatively mature subject in the fault
tolerance literature [2, 10, 16, 18]. “Failure testing as a
service” was first proposed by Gunawi et al [15]. More
recently, large-scale infrastructures supporting fault injec-
tion in production systems have emerged [6, 13, 29, 23].
In this work, we took advantage of an existing fault injec-
tion service and focused on the problem of intelligently
searching the combinatorial space of possible failures. To
the best of our knowledge, our system is the first large-
scale failure testing service to automate the search using
techniques more sophisticated than simple random fault
injection.

Formal methods [19, 12, 17, 24, 32, 25, 33] have always
been available to programmers, but most require signifi-
cant expertise in a modeling or annotation language. De-

9

GROUP

EVC_MH2_GPS_PAGE_BASIS

GPS_FRONTEND MAPLOLOMO

Y2

EVC_MAP_LT

APIPROXY

EVC_SUB EVC_TRACKEREVC_CHUNK_VH EVC_AB

API

ABCLOUD

EVCEVC_CHUNK_VH

EVC_CHUNK_VH

HXFASTGETVIEWINGHCOMMAND

GROUP

HXFASTGETVIEWINGHCOMMANDPRIMARYHXNDCSGETCACCOUNTBYCUSTOMERID EVCEVC_SUB

EVC_SUBEVC_MH2_GPS_PAGE_BASIS

EVCEVC_MH2_GPS_PAGE_BASISAstyanaxM2_GPS_PAGE_BASIS_DATA

GPS_FRONTEND

RibbonABCLOUD

ABCLOUD

HXNDCMAPGPS2GET

RibbonGPS_FRONTEND

HXCONTINUEWATCHINGGROUP

RibbonGROUP

HXNDCABGETALLOCATIONS

GROUP_SERVICE

EVCEVC_MAP_LT

EVC_MAP_LT

EVCEVC_TRACKER

EVC_TRACKER

HXNDCLAZYLOAD

MAPLOLOMO

HXNDCSGETCACCOUNTBYCID EVCEVC_Y2

EVC_YELLOW2

Y2

EVCEVC_YELLOW2

APIPROXY

RibbonAPI

API

EVC_AB

HXHXYSQUARESETTAG HXHXGETPROFILES HXSOCIALISENABLED

RibbonY2

YELLOW2

EVCEVC_AB HXNDCMAPGETCDLISTS HXNDCMAPGETNEWLOLOMO

RibbonMAPLOLOMO

HXHXABCLCONTEXTEVALUATE HXCRYPTEXDECRYPTHXHXYSQUAREGETTAGS HXHXGETABSERVICECL

Figure 6: The App Boot call graph.

Consequence

MAPLOLOMO

GROUP_SERVICE EC_CHUNK_VH EC_TRACKER GPS_FRONTEND

EC_MH2_GPS_PAGE_BASIS

APIPROXY

API

EC_AB EC_YELLOW2 EC_SUB YELLOW2

Figure 7: A simplified trace for the request class shown in
Figure 5, after injecting a crash failure in the EVCache
Map service (EC MAP LT cache service). In this execu-
tion, the LOLOMO (List-of-lists-of movies) must be com-
piled via a deeper subgraph involving calls to several ser-
vices (e.g. GROUP SERVICE, GPS SERVICE).

spite the difficulty of mastering these tools, large scale
Internet companies have reported some recent success us-
ing formal methods [26]. In contrast to most of these ap-
proaches, our project focused on finding bugs on unmod-
ified (and indeed already deployed) systems. Rather than
exhaustively verifying the behavior of individual compo-
nents, as would a strategy such model checking, FIT and
LDFI test end-to-end properties of complete systems.

LDFI uses data lineage to reason about the underlying
redundancy provided by a fault tolerant distributed sys-
tem. Lineage [22, 8, 20, 27, 31] is a mature research
area in the data management systems community. While
the LDFI prototype uses classic lineage collection and
analysis techniques, as we described in Section 4.2 fine-
grained data lineage was not available at Netflix. Our
approximation—the conjunction of the history of call
graphs for a given request class—resembles a (positive)
lineage graph.

8 Conclusions and Future Work
The results presented in Section 6 are preliminary, as
LDFI has been running in production at Netflix for a short
time. As it continues to run on a fraction of our production
user traffic, we expect that it will continue to uncover both
“fresh” bugs in new software releases and existing deep
bugs lurking within new request classes that we have not
yet explored. We also anticipate that as the Chaos Engi-
neering discipline proliferates among Internet companies,
approaches such as LDFI will become increasingly rele-

vant.
As we saw, the challenges in applying the research to

a “real-world” system largely arose from an impedance
mismatch between the idealized model of reality of the
research prototype and the rigid and often messy realities
of production systems. It was impractical to modify the
existing systems to more closely resemble the model—
in addition to the bare complexity of such a task, there
are too many live processes dependent on them to make
such changes safe. At the same time, it was undesirable
to complicate the models to make them resemble reality—
after all, the strength of models is in their simplicity and
abstraction.

In the end, the solutions that we devised all involved a
principled mapping between concrete systems and struc-
tures and the idealized model. We were able to preserve
the fundamental facets of the LDFI approach—successful
outcomes, lineage and replay—by approximating them as
“views” over existing services and data structures.

We hope that lessons have emerged from our experi-
ences on two levels. First, we showed how to implement
LDFI as a microservice that “snaps in” to existing trac-
ing and fault injection infrastructures. We hope that this
experience can be a guide for future integrations efforts.
Second, and perhaps more importantly, we share impor-
tant evidence that it is possible (and indeed, profitable!)
to push distributed system research prototypes into pro-
duction usage.

References
[1] Chaos Community Day. http://chaos.

community.

[2] The Netflix Simian Army. http:
//techblog.netflix.com/2011/07/
netflix-simian-army.html, 2011.

[3] P. Alvaro, N. Conway, J. M. Hellerstein, and W. R.
Marczak. Consistency Analysis in Bloom: a CALM
and Collected Approach. CIDR’12.

[4] P. Alvaro, W. R. Marczak, N. Conway, J. M. Heller-
stein, D. Maier, and R. Sears. Dedalus: Datalog in
Time and Space. Datalog’10.

[5] P. Alvaro, J. Rosen, and J. M. Hellerstein. Lineage-
driven fault injection. In SIGMOD, 2015.

10

http://chaos.community
http://chaos.community
http://techblog.netflix.com/2011/07/netflix-simian-army.html
http://techblog.netflix.com/2011/07/netflix-simian-army.html
http://techblog.netflix.com/2011/07/netflix-simian-army.html

[6] A. Basiri, N. Behnam, R. de Rooij, L. Hochstein,
L. Kosewski, J. Reynolds, and C. Rosenthal. Chaos
engineering. IEEE Software, 33(3):35–41, May
2016.

[7] P. Buneman, S. Khanna, and W.-c. Tan. Why and
Where: A Characterization of Data Provenance.
ICDT’01.

[8] J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance
in Databases: Why, How, and Where. Found. Trends
databases, April 2009.

[9] Y. Cui, J. Widom, and J. L. Wiener. Tracing the
lineage of view data in a warehousing environment.
ACM Trans. Database Syst., June 2000.

[10] S. Dawson, F. Jahanian, and T. Mitton. ORCHES-
TRA: A Fault Injection Environment for Distributed
Systems. Technical report, FTCS, 1996.

[11] What is Falcor? https://netflix.github.
io/falcor/starter/what-is-falcor.
html.

[12] D. Fisman, O. Kupferman, and Y. Lustig. On verify-
ing fault tolerance of distributed protocols. In Tools
and Algorithms for the Construction and Analysis
of Systems, volume 4963 of LNCS. Springer Berlin
Heidelberg, 2008.

[13] FIT : Failure Injection Testing. http:
//techblog.netflix.com/2014/10/
fit-failure-injection-testing.html.

[14] B. Fitzpatrick. Distributed Caching with Mem-
cached. Linux J.

[15] H. S. Gunawi, T. Do, J. M. Hellerstein, I. Stoica,
D. Borthakur, and J. Robbins. Failure as a service
(FaaS): A cloud service for large-scale, online fail-
ure drills. Technical report, EECS Department, Uni-
versity of California, Berkeley, 2011.

[16] H. S. Gunawi, T. Do, P. Joshi, P. Alvaro, J. M.
Hellerstein, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, K. Sen, and D. Borthakur. FATE and DES-
TINI: A Framework for Cloud Recovery Testing.
NSDI’11.

[17] G. Holzmann. The SPIN Model Checker: Primer
and Reference Manual. Addison-Wesley Profes-
sional, 2003.

[18] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham.
Ferrari: A flexible software-based fault and error in-
jection system. IEEE Trans. Comput., Feb 1995.

[19] C. E. Killian, J. W. Anderson, R. Jhala, and A. Vah-
dat. Life, Death, and the Critical Transition: Finding
Liveness Bugs in Systems Code. NSDI’07.

[20] S. Köhler, B. Ludäscher, and D. Zinn. First-Order
Provenance Games. In In Search of Elegance in the
Theory and Practice of Computation, volume 8000
of LNCS. Springer, 2013.

[21] A. Lakshman and P. Malik. Cassandra: A Decen-
tralized Structured Storage System. SIGOPS Oper.
Syst. Rev.

[22] A. Meliou and D. Suciu. Tiresias: The Database
Oracle for How-to Queries. SIGMOD ’12.

[23] Introduction to the Fault Analysis Service.
https://azure.microsoft.com/
en-us/documentation/articles/
service-fabric-testability-overview/.

[24] M. Musuvathi, D. Y. W. Park, A. Chou, D. R. En-
gler, and D. L. Dill. CMC: A Pragmatic Approach
to Model Checking Real Code. SIGOPS Oper. Syst.
Rev., 2002.

[25] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A.
Nainar, and I. Neamtiu. Finding and Reproducing
Heisenbugs in Concurrent Programs. OSDI’08.

[26] C. Newcombe, T. Rath, F. Zhang, B. Munteanu,
M. Brooker, and M. Deardeuff. Use of Formal Meth-
ods at Amazon Web Services. Technical report,
2014.

[27] S. Riddle, S. Köhler, and B. Ludäscher. Towards
Constraint Provenance Games. TaPP’14.

[28] B. H. Sigelman, L. A. Barroso, M. Burrows,
P. Stephenson, M. Plakal, D. Beaver, S. Jaspan, and
C. Shanbhag. Dapper, a Large-Scale Distributed
Systems Tracing Infrastructure. Technical report,
Google, Inc., 2010.

[29] A Deep Dive into Simoorg: Our Open Source Fail-
ure Induction Framework.

[30] G. Tsoumakas and I. Katakis. Multi-label classifi-
cation: An overview. International Journal of Data
Warehousing and Mining, 3(3):1–13, 2007.

[31] Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo. An-
swering Why-not Queries in Software-defined Net-
works with Negative Provenance. HotNets’13.

[32] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin,
M. Yang, F. Long, L. Zhang, and L. Zhou. MODIST:
Transparent Model Checking of Unmodified Dis-
tributed Systems. NSDI’09.

11

https://netflix.github.io/falcor/starter/what-is-falcor.html
https://netflix.github.io/falcor/starter/what-is-falcor.html
https://netflix.github.io/falcor/starter/what-is-falcor.html
http://techblog.netflix.com/2014/10/fit-failure-injection-testing.html
http://techblog.netflix.com/2014/10/fit-failure-injection-testing.html
http://techblog.netflix.com/2014/10/fit-failure-injection-testing.html
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-testability-overview/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-testability-overview/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-testability-overview/

[33] Y. Yu, P. Manolios, and L. Lamport. Model checking
tla+ specifications. CHARME ’99.

12

	Introduction
	Lineage-driven fault injection
	Lineage
	Boolean encoding and solving
	Alternating execution

	Failure Testing at Netflix
	Failure Scope
	Injection Points
	Failure Scenarios

	Challenges
	Language
	Lineage: granularity and redundancy
	Identifying successful outcomes
	Replayability

	Solutions
	Measuring Success
	Replay
	Request Classes
	Learning Mappings

	Lineage

	Results
	Implementation
	Case study: App Boot

	Related Work
	Conclusions and Future Work

