Verbs retrieve subjects, not clausal attachment sites
Netta BEN-MEIR, Nick VAN HANDEL, & Matt WAGERS Department of Linguistics

RESEARCH QUESTION: Do the verb’s retrieval cues target attachment sites, leading to interference from multiple clauses?

1. Similarity-based Interference

- **Cue-based retrieval** guides resolution of subject-verb dependencies [1, 2]
 - Parser launches a search for the subject at the verb, guided by certain retrieval cues
- **Similarity-based interference** occurs when multiple candidates in memory match the verb’s retrieval cues
 - What kind of cues are used for retrieval?
 - Semantic properties, structural position, and case shown to be relevant cues for retrieval [2, 3]

2. Attachment sites or subjects?

- Interference could be due to multiple subjects or multiple attachment sites for the verb
- Subject properties often correlate with clausal properties
 - Nominative case in finite clauses; accusative case in non-finite [3]
 - Multiple subjects correlate with multiple clausal attachment sites
 - When the parser encounters a DP, it projects an accompanying T,
 which serves as an attachment site for the verb

3. Experiment 1a

- Manipulate complexity of intervener with PP modifiers: increased activation leads to greater competition at retrieval [3, 4]

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Complex Subject</th>
<th>Complex Clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrieval site</td>
<td>(was)</td>
<td>(was)</td>
<td>(was)</td>
</tr>
<tr>
<td>Subject</td>
<td>VS</td>
<td>VS</td>
<td>VS</td>
</tr>
<tr>
<td>Clause</td>
<td>-11 ms</td>
<td>-22 ms</td>
<td>-32 ms</td>
</tr>
<tr>
<td>RT</td>
<td>1000 ms</td>
<td>998 ms</td>
<td>1007 ms</td>
</tr>
</tbody>
</table>

Prediction: Slower reading times at retrieval site in Complex Subject and Complex Clause conditions

4. Experiment 1b

- **Hypothesis:** The verb’s retrieval cues target both arguments and attachment sites; clauses should also give rise to interference
 - DP: The student who knew the exam was important was studying,
 - TP: T was +NOM +5G
 - The student…TP
 - The exam…

5. Experiment II

- Used pre-head modifiers to keep number of clause-final modifiers constant and avoid anti-locality effects

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Complex Subject</th>
<th>Complex Clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrieval site</td>
<td>(was)</td>
<td>(was)</td>
<td>(was)</td>
</tr>
<tr>
<td>Subject</td>
<td>VS</td>
<td>VS</td>
<td>VS</td>
</tr>
<tr>
<td>Clause</td>
<td>-11 ms</td>
<td>-22 ms</td>
<td>-32 ms</td>
</tr>
<tr>
<td>RT</td>
<td>1000 ms</td>
<td>998 ms</td>
<td>1007 ms</td>
</tr>
</tbody>
</table>

Prediction: Slower reading times at retrieval site in Complex Subject and Complex Clause conditions

FUTURE DIRECTIONS:

- **Match / Mismatch paradigm instead of elaboration**
 - Vary tense or aspect of embedded clause to match matrix verb’s cues
- **Examine languages with richer Tense / Aspect / Mood morphology**
 - E.g. subjunctive vs. indicative in Spanish

ACKNOWLEDGMENTS: Many thanks to Sonia Dominguez, Jodi Piatron-Guerra, Amanda Ryting, Keloy Kazika, and audiences at UCSC’s s/lab and CAMP 2019 for useful feedback and discussion.