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1 Introduction

Economic analysis is often concerned with the effect of an exogenous or strategic variable on an

agent’s decision: would a consumer buy less of good A if the price of good B falls? would a firm

follow its rival when the latter raises its price? is someone more likely to join a demonstration

if it is known that more people are participating? The theory of monotone comparative statics

identifies properties on payoff functions, such as the single crossing property (see Milgrom and

Shannon (1994)), that are necessary and sufficient for optimal choices to be monotone with respect

to opponents’ strategies and exogenous variables. The empirically relevant follow-up question is the

following: what kind of observed choice behavior would be necessary and sufficient for the recovery

of payoff functions obeying the single crossing property? The key contribution of this paper is to

answer this revealed preference question and to show that it forms the basis of an econometric

analysis of games with strategic complements.

One obvious and important area of application of our results is to the study of entry games (as

in Bresnahan and Reiss (1990), Berry (1992), or Ciliberto and Tamer (2009)) and other games that

arise in the empirical IO literature. In these papers, firms’ entry decisions are modeled as games

of complete information, where each firm’s decision on whether or not to enter a given market is

a best response to the entry decisions taken by other firms in that market. The payoff functions

are assumed to depend on observable variables in a specific parametric form while the unobserved

component is additively separable. The unobserved component is heterogenous across markets and

belong to a known class of distributions. Entry decisions by firms across many markets are observed,

from which one could then estimate firms’ payoff functions. A major issue in this work concerns

the effects of strategic interaction and market characteristics in terms of its direction and size: how

often does the entry of another firm encourage or deter entry? to what extent does an exogenous

variable (such as market size) encourage or deter the entry of other firms?

Our approach has as its starting point a data set of the same type as the papers cited above. With

this data set we can test whether firms are playing pure strategy Nash equilibria (PSNE), subject

to single crossing restrictions on its payoff functions. For example, we can test the hypothesis

that a firm’s entry into a market is encouraged when the market is large and discouraged when

another firm is also entering. Our method works without imposing any parametric assumptions on
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payoff functions, without assuming that unobserved heterogeneity is additive or that its distribution

belongs to a particular family, and without assumptions on equilibrium selection. By specifying a

joint distribution on the payoff functions, we allow for correlation or other forms of dependence

among firms’ payoff functions, which is important in many settings (see Chen, Christensen and

Tamer (2018)). To pass our test means that the hypothesis that the data are explained as PSNE

by firms with payoff functions satisfying single crossing restrictions cannot be refuted.

At its most basic, our approach provides a way for researchers to test the general (nonparametric)

features of a model, before the implementation of a more restrictive parametric model that could

be used for inference and prediction. In some cases, the confirmation of monotone features which

are part of our test could also facilitate estimation procedures.1 Beyond this, since our test recovers

the distributions on firms’ payoff functions that satisfy single crossing restrictions and agree with

the observations, the procedure can also be extended for the purposes of inference and prediction

(when the data set passes the test).

While we write of recovering “payoff functions”, what we are really recovering are a player’s

preference over different actions, conditional on covariates and the actions of other players; this is

as it should be, because in an environment where only PSNE are played, the information recovered

from the data has to be just ordinal. The specific preference property we test (or when making

inferences, assume) – the singe crossing property – is also an ordinal property.

Our econometric approach is similar to that in Kitamura and Stoye (2018) (henceforth KS).2

This paper tests a random utility model of consumer demand. In the first step, it is assumed that the

population distribution of consumer demand at a linear budget set B, which we denote by Pp�|Bq,
1 This information could be used to build a mapping from specific moments of the data to the identified set of

relevant parameters. For instance, in two-player games the sign of the strategic interaction parameters allows us to
identify outcomes that could occur only as a unique equilibrium; it follows that the probabilities of these outcomes
(conditional on various observable variables) do not depend on any equilibrium selection mechanism and can be
nicely related to payoff relevant parameters (see Tamer (2003) and Kline and Tamer (2016)). Shape restrictions can
also reduce the size of the identified set of relevant parameters (see, e.g., Matzkin (2007)) and allows for the more
efficient use of small sample data sets (see, e.g., Beresteanu (2005,2007)).

2 Our approach is also close in spirit, though not in its specifics, with the nonparametric random utility models
studied in Tebaldi, Torgovitsky, and Yang (2023), Deb, Kitamura, Quah and Stoye (2022), Apesteguia, Ballester
and Lu (2017), Hoderlein and Stoye (2014), Manski (2007), McFadden (2005), McFadden and Richter (1991), and
Marschak (1960). As far as we know, our paper is the first to exploit this nonparametric approach to study games.
Note that Kitamura and Stoye’s empirical approach (and hence our approach, too) is based on linear program-
ming, which can be also found in earlier works, for example, such as Honoré and Tamer (2006) and Chernozhukov,
Fernàndez-Val, Hahn and Newey (2013).
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is known for a finite collection of budget sets B. Then one could formulate necessary and sufficient

conditions under which this idealized data set PKS � tPp�|BquBPB is generated by a population

of utility-maximizing consumers, under the conditional independence assumption; this assumption

requires the distribution of utility functions (which generates the distribution of demand) to be the

same at each budget set B P B. The characterization of PKS in KS is facilitated by the well-known

characterization of utility-maximizing demand behavior for a single consumer, known as the strong

axiom of revealed preference (SARP). The second step in the KS approach is to show how the

characterizing conditions on PKS could be statistically tested for an actual data set, with empirical

frequencies at each budget set B P B.

The key observation in our paper is that the procedure implemented in KS could also be used

for analyzing specific classes of games, provided certain obstacles are overcome. We have the same

two-step approach as in KS. We assume that there is a large population of groups, with each group

playing the same game. To begin, we assume that the population distribution over joint action

profiles at a given vector of covariate values x, which we denote by Pp�|xq, is known for a finite

set of covariate values pX.3 (The set pX takes the place of B in the KS model.) Then we can

formulate necessary and sufficient conditions under which the idealized data set P � tPp�|xquxP pX
is consistent with a population of groups made up of agents having payoff functions satisfy single

crossing conditions and playing PSNE, under the assumption of conditional independence (which

in this case means that the distribution of payoff function profiles across groups is the same at

different x P pX). The second step in our approach shows how the characterizing conditions on P

could be statistically tested on an actual data set with empirical frequencies over action profiles at

different covariate values; for this second step, we simply follow the statistical procedure in KS.

Similar to KS, the characterization of P � tPp�|xquxP pX requires that we find necessary and

sufficient conditions under which the joint actions from a single group at different covariate values

are consistent with our hypothesis of PSNE play and payoff functions satisfying singe-crossing

conditions (with respect to opponents’ actions and covariates). Since, unlike KS, there is no ready-

made characterization for this class of games, we need to develop it ourselves. We show that this

3 Variation of feasible sets (as in KS) can be included in our analysis of games (see Lazzati, Quah and Shirai
(2018)), but we have avoided it, in order not to burden the reader with too many model features and also because
our empirical application does not have such variation. (See also Carvajal (2004) for a related result.)
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hypothesis can be characterized by a property we call the revealed monotonicity (RM) axiom. This

axiom plays the role of SARP in the KS model.

When the data set passes the test, our approach is in turn useful for making inference and

prediction in the spirit of Deb, Kitamura, Quah and Stoye (2022), which deals with a version of

the consumer model. For example, we can estimate the fraction of players who are effectively

nonstrategic, in the sense that their actions depend only on covariate values and are independent

of what other players do. We can also bound the proportion of groups which (at a given covariate

vector) has a particular equilibrium profile as a PSNE (along the lines of the analysis in Aradillas-

Lopez (2011)); note that this potentially differs from the observed fraction of groups playing that

action profile, not just because of sampling variation, but also because a given action profile could

be a non-chosen PSNE when there are multiple PSNE.

The procedure in KS is hard to implement when there is a large number of budget sets and

Smeulders, Cherchye, and De Rock (2021) propose a column generation method to deal with this

difficulty. This method is also applicable in our setting and is useful in easing the computational

burden of our test when (for example) pX is a big set. In our paper, we develop a new result on

column generation that allows for this method to be used, not just for testing but also inference.

The rest of the paper is organized as follows. In Section 2, we provide an outline of how

our procedure works in the context of an entry game and contrast it with a parametric approach.

Section 3 presents our main results at the population level. We introduce the revealed monotonicity

axiom and use it to characterize those distributions over joint actions that are consistent with

our hypothesis; properties of the underlying distribution over payoff function profiles can also be

recovered. Section 4 explains how the population-level analysis in Section 3 can be implemented

on finite sample data. In this section we also introduce and extend the column generation method

of Smuelders et al. (2021). To illustrate our approach, we carry out an empirical analysis of entry

decisions made by airlines; this is found in Section 5.

2 Motivating example

There is a large empirical literature modelling oligopoly entry decisions. We shall use this model

to illustrate the basic question we are interested in and the approach we propose to address this
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x2 � p0, 0q Firm 2
N E

Firm 1
N 3/12 3/12
E 4/12 2/12

x2 � p0, 1q Firm 2
N E

Firm 1
N 1/12 5/12
E 3/12 3/12

x2 � p1, 0q Firm 2
N E

Firm 1
N 2/12 4/12
E 2/12 4/12

Table 1: P � tPp� | x2 � p0, 0qq, Pp� | x2 � p0, 1qq, Pp� | x2 � p1, 0qqu

question. For simplicity, we treat the case of two firms. Let yi P tN,Eu be the action set of firm i,

where E means that the firm enters the market and N that it stays out and let xi be a real-valued,

finite-dimensional vector of exogenous profit shifters (covariates) that affect firm i’s profit and are

observed by the other firm and the researcher.

We assume that there is a large population of markets, with each market consisting of a Firm 1

and a Firm 2 that make their entry decisions simultaneously. The designation of a player as Firm 1

or Firm 2 is made by the researcher and based on observable characteristics; for example, in Kline

and Tamer (2016), one firm is ‘Low-Cost Carrier’ and the other firm ‘Other Airlines’ (see Section

5). There is a finite set of realized profit shifters which we denote by pX. For each px1, x2q P pX,

we suppose that the population distribution of joint action profiles Pp� | x1, x2q is known to the

researcher. The idealized data set can then be succinctly written as P � tPp� | px1, x2qqpx1,x2qP pX.

An example of P is given Table 1, where we assume there is only variation in x2 and it takes three

possible vector values; for example, the box in the left gives the value of Pp� | x2 � p0, 0qq with

(say) PppE,Nq | x2 � p0, 0qq � 4{12. We are interested in developing a procedure which allows us

to identify those P which are compatible with our model of firm entry. Of course, in any empirical

analysis these characterizing conditions on P would have to be statistically tested on an actual data

set with sampling variation (as we explain in detail in Section 4). Confining our discussion to P at

this stage allows us to focus on the more distinctive aspects of our analysis.

We now describe the model which (potentially) generates P . We denote the payoff/profit of

firms 1 and 2 by Π1 py1, y2, x1q and Π2 py1, y2, x2q respectively. We postulate that entry decisions are

generated as pure strategy Nash equilibria (PSNE) of an entry game between Firms 1 and 2. We

allow for multiple PSNE and impose no restriction on how firms select among these equilibria. There

remains unobserved market heterogeneity even after conditioning on px1, x2q; this heterogeneity is

captured by a joint distribution on pΠ1,Π2q, which in turn leads to a distribution over joint actions
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Pp� | x1, x2q. We assume that there is conditional independence, in the sense that the distribution

over pΠ1,Π2q does not vary with the realized value of px1, x2q.
Lastly, we postulate that the firms’ profit functions satisfy single-crossing restrictions (see Mil-

grom and Shannon (1994)). In this context, it means that Firm 1’s entry into the market is

encouraged when the profit shifter x1 takes higher values and is discouraged when Firm 2 chooses

to enter. Formally, we require

Π1 pE, y12, x11q ¡ Π1 pN, y12, x11q ùñ Π1 pE, y22, x21q ¡ Π1 pN, y22, x21q (1)

whenever x21 ¥ x11 and either y12 � y22 or y12 � E and y22 � N . (A similar requirement is imposed on

Π2.) For example, in Ciliberto and Tamer (2009),

Π1 py1, y2, x1q �
$&% α11x1 � δ11y2 � ε1 if y1 � E

0 if y1 � N,
(2)

where 1E � 1 and 1N � 0. In this specification, the entry of Firm 2 alters the profit of Firm 1

by δ1 and unobserved heterogeneity in payoff functions is captured by ε1, which enters the profit

function additively. It is straightforward to check that our single crossing restrictions are satisfied

if δ1   0 and α1 ¡ 0. Note, however, that the converse is not true, i.e., there are distributions over

payoff functions satisfying (1), that cannot be represented in the additive form given by (2), for any

distribution on ε1.

We say that P is consistent with the single-crossing model, or SC-rationalizable, if there there

is a joint distribution of payoff functions pΠ1,Π2q that satisfy our single crossing conditions (1)

such that the resulting distribution of PSNE (given some equilibrium selection rule) coincides with

Pp� | x1, x2q for each x P pX. We would like to answer the following question: what conditions on P

characterize SC-rationalizability? In other words, when presented with P , how could we check if it

is SC-rationalizable?

We first observe that our model does have structural implications for P . Consider an increase

in the observable profit shifters from px11, x12q to px21, x22q; then, at any particular realization Π1 of

Firm 1’s payoff function, if it prefers to enter when the other firm enters at px11, x12q, then the single-
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Type Weight
x2 � p0, 0q x2 � p0, 1q x2 � p1, 0q

Action profiles Action profiles Action profiles
N,N N,E E,N E,E N,N N,E E,N E,E N,N N,E E,N E,E

1 1/12 1/12 1/12 1/12
2 2/12 2/12 2/12 2/12
3 2/12 2/12 2/12 2/12
4 1/12 1/12 1/12 1/12
5 1/12 1/12 1/12 1/12
6 2/12 2/12 2/12 2/12
7 3/12 3/12 3/12 3/12

Sum 1 3/12 3/12 4/12 2/12 1/12 5/12 3/12 3/12 2/12 4/12 2/12 4/12

Table 2: Distribution of types rationalizing data in Table 1

crossing condition guarantees that it will continue to prefer entry at px21, x22q. The same argument

applies to Firm 2, and so we conclude that if pE,Eq is the Nash equilibrium at px11, x12q for a given

realized profit function profile pΠ1,Π2q, then it will be the unique Nash equilibrium at px21, x22q for

this realized profile. Aggregating across all profiles, we establish that

P ppE,Eq | x21, x22q ¥ P ppE,Eq | x11, x12q ,

provided conditional independence holds. This inequality constitutes a restriction on P but it is

not the only restriction imposed by our model. We now sketch out the procedure for systematically

checking whether P is SC-rationalizable, using P presented in Table 1 as an example.

Given a particular realization pΠ1,Π2q, the firms will choose an action profile (either pE,Eq,
pE,Nq, pN,Eq or pN,Nq) at each realization of x2, and as x2 takes different values the action

profile of the two firms may change. We shall refer to the map from x2 to the action profile as a

group type. Notice that even though firms’ profit functions may be heterogenous in infinitely many

ways, its manifestation in behavior must be finite, since there are only finitely many possible actions

and the realized covariates px1, x2q takes values in the finite set pX.

To be precise, there are in total 43 � 64 group types, but not all are consistent with PSNE play

and single-crossing payoff functions. For example, as we have already explained, a group type where

pE,Eq is played at x2 � p0, 0q and pN,Nq at x2 � p0, 1q is not compatible with single crossing. On

the other hand, it is quite clear a group type where pN,Eq is played at all three values of x2 can

be justified with single crossing profit functions.
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Ascertaining if P can be rationalized involves a two-step procedure. Firstly, we must identify all

single-crossing group types, in the sense that the action profile py1, y2q at each value of px1, x2q could

be generated as PSNE from payoff functions satisfying (1). This is do-able because we show in

Section 3 that these group types are characterized by an easy-to-check condition called the revealed

monotonicity axiom. Secondly, we have to check whether there are weights on these group types

that could account for the observed distribution of action profiles; this involves solving a system of

linear inequalities.

We claim that P depicted in Table 1 can be rationalized. To understand why, we list in Table

2 seven possible group types. One could check that each of these group types is consistent with

the single crossing property. When these types are represented in the population with the weights

indicated in Table 2, they generate the distribution of entry decisions observed in Table 1. (Compare

the entries in Table 1 with the last row of Table 2.)

Lastly, we point out that while P is SC-rationalizable, it is not compatible with a model where

profit functions have the form (2), so the latter specification does involve a loss of generality. Indeed,

with this specification, Firm 2’s profit upon entry is

π2pE, y1, x21, x22, ε2q � α21x21 � α22x22 � δ211y1 � ε2, (3)

where pα21, α22q ¡ 0 and δ21   0.4 Whether the boost to profits of an increase in x21 is greater or

smaller than that obtained from the same increase to x22 depends on whether α21 is bigger or smaller

than α22 and is independent of the realization of ε2. So it excludes the case where the realization of

ε2 influences the relative benefit of higher x21 versus higher x22. To see why this parametric model

cannot explain the data in Table 1, suppose instead that it does. Then

PppE,Eq|x1, p1, 0qq�PppE,Eq|x1, p0, 0qq � µ ptε1 : π1pE,E, x1, ε1q ¥ 0u � tε2 : �δ21 ¥ ε2 ¥ �α21 � δ21uq ,

where µ is the probability measure on the space of pε1, ε2q; similarly,

PppE,Eq|x1, p0, 1qq�PppE,Eq|x1, p0, 0qq � µ ptε1 : π1pE,E, x1, ε1q ¥ 0u � tε2 : �δ21 ¥ ε2 ¥ �α22 � δ21uq .
4 We are grateful to Aureo De Paula for suggesting that we construct an example with this specific feature.
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Since the former equals 2{12 while the latter equals 1{12, we conclude that α22   α21. However,

1

12
� PppN,Nq|x1, p0, 0qq�PppN,Nq|x1, p1, 0qq � µ ptε1 : π1pE,N, x1, ε1q ¤ 0u � tε2 : 0 ¥ ε2 ¥ �α21uq

and

2

12
� PppN,Nq|x1, p0, 0qq�PppN,Nq|x1, p0, 1qq � µ ptε1 : π1pE,N, x1, ε1q ¤ 0u � tε2 : 0 ¥ ε2 ¥ �α22uq

which tells us that α22 ¡ α21. So we obtain a contradiction.

In Online Appendix A1, we provide a more elaborate discussion of the contrast between the

observable restrictions imposed by a linear parametric model and our (more general) nonparametric

model. In particular, using simulations based on an extended version of the above example, we show

that the difference between the two models is also picked up at the sample level: the method of Kline

and Tamer (2016) (correctly) finds that the data are inconsistent with the linear model, whereas

our method (also correctly) finds that the data are consistent with the more general model.

3 SC-rationalizable distributions

In this section, we consider a population of groups that play pure strategy Nash equilibria (PSNE)

within each group. We characterize how the distribution of action profiles in this population will

change with covariates when agents have best responses that are monotone with respect to both

covariates and the actions of other agents in the group.

3.1 Games with single-crossing payoff functions

We assume that there is a population of groups, and for each group, we denote the set of agents

by N � t1, 2, ..., nu. Agent i P N chooses an action yi from an action space Yi, which we assume

is finite and totally ordered. We denote a joint action profile of the group by y P Y � �iPNYi.

For each i P N , there is an Mpiq-dimensional covariate xi P Xi � �Mpiq
m�1Xim, and the profile of

xi � pxi1, xi2, ..., xiMpiqq across agents is denoted by x � pxi : i P N q.
The payoff of each agent over different actions in Yi depends on the actions of the other agents

in its group y�i � pyj : j P N , j � iq P Y�i � �jPN ,j�iYj and xi P Xi � �Mpiq
m�1Xim, where Xim is a
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subset of R. Thus the payoff of agent i is given by a function Πi : Yi � Y�i � Xi Ñ R. We use

Π � pΠi : i P N q to indicate a profile of payoff functions.

A pair of payoff functions and covariate profiles pΠ,xq induces a game of complete information

GpΠ,xq. In what follows, we let X � �iPNXi denote the set of conceivable joint realizations of

covariates x. Since some covariates may be shared by multiple agents, X may not be equal to the

direct product of Xi’s (as in our empirical application in Section 5). We denote the best response

of each player i at py�i, xiq by BRipy�i, xiq � argmaxyiPYi Πi pyi,y�i, xiq: throughout this paper, we

assume that agents have strict preferences over actions, so that BRipy�i, xiq has a unique value.5

The set of pure strategy Nash equilibria (PSNE) of this game is defined as

NEpΠ,xq � ty� P Y : y�i � BRipy��i, xiq for all i P N u.

Importantly, even if the best response of every agent is single-valued, there could be multiple PSNE.

We are interested in games where payoff functions obey single crossing conditions (Milgrom and

Shannon, 1994).

Definition 1. The payoff function Πi has single-crossing differences in pyi; py�i, xiqq if the following

holds:6 for every y2i ¡ y1i and py2�i, x2i q ¡ py1�i, x1iq,
Πi

�
y2i ,y

1
�i, x

1
i

� ¡ Πi

�
y1i,y

1
�i, x

1
i

� ùñ Πi

�
y2i ,y

2
�i, x

2
i

� ¡ Πi

�
y1i,y

2
�i, x

2
i

�
. (4)

For simplicity, we may refer to such a payoff function as a single-crossing payoff function.

This condition states that if it is advantageous for agent i to choose a higher action y2i over a

lower one y1i, then it remains advantageous to do so when other players raise their actions and/or

covariates take higher values. The focus of our analysis is the set of payoff profiles

SC � tΠ � pΠiqiPN : Πi is strict and has single crossing differences in pyi; py�i, xiqqu .

Note that single-crossing differences is an ordinal property since any strictly increasing transfor-

5 This assumption is needed for the revealed preference analysis to be meaningful, as, otherwise, we could justify
any behavior by simply claiming that each agent is indifferent among all elements in the action space.

6 The term used in Milgrom and Shannon (1994) is single-crossing property and not single-crossing differences.
The latter term follows Milgrom (2004) and seems more descriptive since the single-crossing condition is imposed on
the difference of the payoff function at two values.

11



mation of a function that obeys single-crossing differences will also obey single-crossing differences.

Furthermore, since a player’s best responses are pinned down by a player’s preference over actions,

NEpΠ,xq � NEprΠ,xq whenever rΠ � prΠiqiPN is a strictly increasing transformation of Π � pΠiqiPN ,

in the sense that rΠi is a strictly increasing transformation of Πi for all i.

The property of single-crossing differences has two key implications which are central to our

study. (See Milgrom and Roberts (1990), Milgrom and Shannon (1994), and Vives (1990).)

Basic Theorem. If Π P SC, the family of games tG pΠ,xq : x P Xu has the following properties:

(i) BRipy�i, xiq is increasing in py�i, xiq for each i P N and

(ii) NE pΠ,xq is non-empty.7

This result says that single crossing differences guarantees that G pΠ,xq is a game of strategic

complements, in the sense that a player optimally increases his action when other players raise

theirs,8 and that these games have pure strategy Nash equilibria. Furthermore, the best response

of each player also increases with the (exogenous) covariate.

Remark 1. By reversing the signs of opponents’ actions and/or covariates, one can guarantee

decreasing best responses with single-crossing payoff functions. However, the existence of PSNE is

no longer ensured unless the game is a two-player game with strategic substitutes (as in Section 2)

or an aggregative game. In the latter, each player’s payoff has the form Πipyi,
°
j�i yj, xiq, and one

can test single crossing differences either in pyi; p
°
j�i yj, xiqq (the case of strategic complements)

or in pyi; p�
°
j�i yj, xiqq (the case of strategic substitutes); the existence of PSNE in these cases is

guaranteed (see Dubey, Haimanko and Zapechelnyuk (2006) and Jensen (2010)).

3.2 Rationalizability

Since the population consists of many groups with heterogenous preferences, even at a given co-

variate value x, different groups will take different joint actions. This generates a conditional

distribution over joint actions y P Y, which we denote by Pp� | xq. Throughout this section, we

7 It is also known that NEpΠ,xq has a smallest and a largest element and that they increase with x; however,
this property is of limited use in our setting since we make no assumptions on equilibrium selection.

8 There is also a sense in which single-crossing differences in necessary for monotone optimal solutions; see
Milgrom and Shannon (1994).
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assume that Pp� | xq is known for x1s contained in some finite subset pX � X. In applications, it

may be the case that pX � X but it is also possible for pX � X. The set X may or may not be finite,

but it is important for our results that pX is finite.9 We wish to consider the conditions under which

a set of choice distributions

P �
!

Pp� | xq : x P pX)
is consistent with (in other words, generated by) pure strategy Nash equilibrium play in games with

single-crossing payoff functions. Note that different choices across groups can arise not only from

heterogeneity in payoff functions but also from heterogeneity in equilibrium selection rules among

PSNE (both of which are not directly observed by the researcher).

Conditionally independent random payoff functions. To capture preference heterogeneity,

we assume that the profile of payoff functions, Π � pΠiqiPN , is random and distributed according

to PΠ. (Notice that we are abusing notation by using Π to denote both the random variable and

a particular realization.) By specifying a joint distribution on the payoff functions, we allow for

correlation or any other type of dependence across the payoffs of the group members. In particular,

we can be agnostic about correlations arising from group formation processes in the population

(of the type observed in Chen et al. (2018), for example). Let PΠ|x be the distribution of payoff

function profiles conditional on the realized values of the covariates x; we assume that PΠ satisfies

conditional independence in the sense that it does not depend on x, i.e., PΠ|x � PΠ for all x P pX.

Equilibrium selection rule. Given x and a particular realization Π in SC, the Basic Theorem

tells us that the set of pure strategy Nash equilibria NEpΠ,xq is non-empty, and even though we

assume that best replies are single-valued, we cannot rule out the possibility of multiple equilibria.

We denote the equilibrium selection rule by λ py|Π,xq; this refers to the fraction of groups in the

population with payoff functions Π and covariates x that select the action profile y. We assume

λ py|Π,xq � 0 for all y R NEpΠ,xq and
°

yPY λpy|Π,xq � 1.

We are now in position to spell out precisely what it means for a set of distributions P to be

9 In Kitamura and Stoye (2018) and Deb et al (2022), the analog to pX is the set of the price vectors at which
the distribution of demand is known, whereas the analog to X is the set of all strictly positive price vectors; for
essentially the same reasons, it is also important in their analyses that the former is finite. Possible ways of extending
to the case where (what we call) pX is infinite are discussed briefly in Kitamura and Stoye (2018, Section 8) and their
observations are also potentially applicable here.
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consistent with PSNE in games with single-crossing payoff functions.

Definition 2. A distribution PΠ, with support on SC, rationalizes the set of choice distributions

P if there is an equilibrium selection mechanism λ p�|Π,xq such that

Ppy|xq �
»
λ py|Π,xq dPΠ for all y P Y and all x P pX. (5)

P is single-crossing rationalizable (or SC-rationalizable) if it admits such a distribution PΠ; in other

words, there is a distribution among payoff function profiles in SC and an equilibrium selection rule

that could account for the observed distribution of joint actions at each x P pX.

Remark 2. SC-rationalizability requires the domain of each agent’s recovered payoff function to be

Yi�Y�i�Xi, rather than Yi�Y�i� proji pX, and single crossing differences must also be satisfied

on the entire domain, i.e., even for actions that are available but not chosen and covariate values

that are not part of pX.10

Remark 3. We adopt conditional independence in this paper, because it is a tractable and quite

prevalent restriction in empirical work. There are ways to weaken or modify this condition. If the

modeler has a specific belief about the way that Π depends on the covariate x other than conditional

independence, then it may be possible to replace conditional independence with the new condition

and develop a characterization for this modified notion of SC-rationalizability (see Remark 4), along

with a statistical procedure to test it. Alternatively, in applications where conditional independence

may be suspect, but instrumental variables are available, one may develop control variables for

which the distribution of the payoff function profiles (after conditioning on the control variables) is

independent of x; with this one could calculate endogeneity-corrected distributions on actions, to

which our results are applicable (see Kitamura and Stoye (2018)).

3.3 The revealed monotonicity (RM) axiom

We now explain how SC-rationalizable distributions may be characterized. The characterization

has two parts and generalizes the procedure we used in the illustration in Section 2. Firstly,

10Note that proji
pX is the projection of pX to the set of possible values of xi. That is, letting x�i be a profile of

covariates of agents other than i, proji
pX � txi : pxi,x�iq P pX for some x�iu.
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we characterize all group types that could be generated by payoff functions with single crossing

functions. Secondly, we find weights on these types that could account for the distributions in P .

I: Single-crossing rationalizable group types

A group type associates a profile of actions y to each covariate x P pX. Formally, it is a function

B: pX Ñ Y. For reasons which will be clear later, it is convenient to generalize the notion of group

types to correspondences; thus a generalized group type is a map from pX to a nonempty subset of

Y. We could interpret a generalized group type as a set of observations generated by a group of

players with fixed preferences, where Bpxq consists of the action profiles that are played at the game

with covariate x. We wish to characterize all group types where Bpxq consists of PSNE and players

have payoff functions Π in SC.

Definition 3. A generalized group type B : pXÑ Y is a single-crossing group type if there exists

a profile of payoff functions Π in SC such that Bpxq � NEpΠ,xq for all x P pX.

The next definition provides the key observable feature of single-crossing group types.

Definition 4. A generalized group type B : pXÑ Y obeys the revealed monotonicity (RM) axiom,

if for each x1,x2 P pX,

y1 P Bpx1q,y2 P Bpx2q, and py2�i, x2i q ¥ py1�i, x1iq ùñ y2i ¥ y1i for each i P N . (6)

This axiom imposes a monotonicity restriction on B in the sense that it requires player i to take

a weakly higher action whenever all other players are choosing higher actions and the covariate

values are also higher. Note, however, that it does not require that if x2 ¥ x1,y2 P Bpx2q, and y1 P
Bpx1q ùñ y2 ¥ y1. Indeed, the axiom even allows for y2   y1, which corresponds to the case

where there are two ranked Nash equilibria (at both x1 and x2), with players’ jointly playing the

lower equilibrium at the higher covariate value. The following theorem states that this axiom fully

characterizes single-crossing group types.

Theorem 1. The correspondence B : pX Ñ Y is a single-crossing group type if and only if it

satisfies the RM axiom.

We can think of Theorem 1 as a revealed preference counterpart to the Basic Theorem. Whereas

that theorem tells us that whenever Π P SC, players have monotone best response functions, this
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result says that one could rationalize a given group type with some Π P SC, so long as it displays no

violations of monotonicity. Theorem 1 gives the econometrician, through the RM axiom, a simple

way of checking whether or not a given group type is SC-rationalizable.

It is clear that the RM axiom is necessary. Indeed, suppose that Bp�q is a single-crossing group

type and for some y2 P Bpx2q and y1 P Bpx1q, it holds that py2�i, x2i q ¥ py1�i, x1iq for some i P N .

Then, for this agent i, there is some single-crossing payoff function Πi for which y2i � BRipy2�i, x2i q
and y1i � BRipy1�i, x1iq and Basic Theorem (i) immediately implies that y2i ¥ y1i. Thus the more

substantial part of this theorem is the claim that the RM axiom is sufficient for a group type to

be single-crossing. In the proof (see Appendix), we explicitly construct, for each i P N , a single-

crossing payoff function Πi that supports yi as the best response to py�i, xiq for every y P Bpxq.
This payoff function is defined on Yi�Y�i�Xi, rather than Yi�Y�i�proji pX, with single-crossing

differences being satisfied on the entire domain. Indeed, the payoff functions we construct satisfy

increasing differences11 (rather than just single-crossing differences) and are also single-peaked.12

II: Finding weights on group types

Since the set of possible action profiles Y and pX are finite, the set of all possible group types is

also finite. We denote the set of single-valued and single-crossing group types by B. The following

result characterizes SC-rationalizable choice distributions P � tPpy | xq : x P pXu using the set of

single-crossing group types B or, equivalently (by Theorem 1), those group types that obey the RM

axiom.

Theorem 2. P is SC-rationalizable if and only if there exists a distribution τ � pτBqBPB on B such

that the following holds:

Ppy | xq �
¸

tBPB: Bpxq�yu
τB for all y P Y and x P pX. (7)

11We say that Πipyi,y�i, xiq has increasing differences in pyi; y�i, xiq, if Πipy
2
i ,y

2
�i, x

2
i q � Πipy

1
i,y

2
�i, x

2
i q ¥

Πipy
2
i ,y

1
�i, x

1
iq � Πipy

1
i,y

1
�i, x

1
iq for every y2i ¡ y1i and py2

�i, x
2
i q ¡ py1

�i, x
1
iq. This implies single-crossing differ-

ences, but not vice versa. Note that ability to guarantee a stronger property under the RM axiom is not altogether
surprising and something similar is found in Afriat’s Theorem: the generalized axiom of revealed preference (GARP)
is necessary so long as the consumer has a locally nonsatiated preference, but when a data set obeys GARP then it
can then be rationalized by a utility function with stronger properties: continuous, increasing, and concave.

12This means that, for each py�i,xq, there is ȳi such that Πipȳi,y�i,xq ¡ Πipyi,y�i,xq for all yi � ȳi, with
Πipyi,y�i,xq being strictly increasing in yi for yi ¤ ȳi and strictly decreasing in yi for ȳi ¥ yi.

16



Proof of Theorem 2. The proof of the “if” part of this claim is particularly straightforward, since the

characterization is itself an instance of SC-rationalizability. Indeed, suppose there is a distribution

τ � pτBqBPB on B such that (7) holds. By definition, there is some Π P SC that rationalizes B for

each B P B. By taking increasing transformations if necessary, we can guarantee that distinct group

types in B are rationalized by distinct payoff function profiles in SC. We denote the profile that

rationalizes B by ΠB. Then P is SC-rationalizable with a distribution PΠ that assigns probability

τB to ΠB P SC and an equilibrium selection rule λ where λ
�
y | ΠB,x

� � 1 if y � Bpxq and

λ
�
y | ΠB,x

� � 0 if y � Bpxq; in other words, all groups in the population with payoff profile ΠB

will play Bpxq at each x P pX.

Conversely, suppose P is SC-rationalizable, with the distribution PΠ and the equilibrium selec-

tion rule λ. Let

ppB,Πq � �xP pXλ pBpxq | Π,xq (8)

and let τB � ³
ppB,Πq dPΠ. If B is not a single crossing type, then ppB,Πq � 0 for all Π P SC.

Therefore, for Π P SC, ¸
BPB

ppB,Πq � 1, (9)

which guarantees that
°

BPB τ
B � ³

SC dPΠ � 1 (since the support of PΠ lies in SC). Furthermore,

it follows from (8) that λpy | Π,xq � °
tBPB:Bpxq�yu ppB,Πq and thus

Ppy|xq �
»
λ py|Π,xq dPΠ �

¸
tBPB: Bpxq�yu

»
ppB,Πq dPΠ �

¸
tBPB: Bpxq�yu

τB.

QED

Theorems 1 and 2 together provide us with a way of establishing the SC-rationalizability of P .

First, we must identify the single-crossing group types, which, by Theorem 1, we can do via the

RM axiom. Then Theorem 2 tells us that checking if P is SC-rationalizable boils down to finding

a positive solution to a set of equations linear in the unknowns τB for all B P B.13

Remark 4. It is part of the definition of SC-rationalizability that the distribution of Π � pΠiqiPN
is independent of x. Suppose we drop this condition but still require all payoff functions to consist

13 In some problems, it may not be computationally feasible to find all the elements of B, but in those cases, one
could still test for SC-rationalizabiity by progressively enlarging the set of single-crossing types (see Section 4.1).
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of single-crossing functions; then it is easy to see that the payoff functions and equilibrium selection

rules will induce a distribution over group types in B at each x, which we may denote by pτB
x qBPB,

such that the following counterpart of (7) holds:

Ppy | xq �
¸

tBPB: Bpxq�yu
τB
x for all y P Y and x P pX. (10)

This condition is trivially true in the sense that one could always find pτB
x qBPB such that it holds.

Conditional independence imposes the additional requirement that τB
x1 � τB

x2 for any x1, x2 P pX and

this condition in combination with (10) is obviously equivalent to (7). One could imagine situations

where the modeler has different views of how the distribution of Π (and hence the distribution of

the associated group types) varies with x, which may be more permissive than or different from

conditional independence; these could be incorporated as further conditions on τB
x that could be

tested in combination with (10). Obviously, such a test will remain a linear test if the added

conditions are linear in τB
x .

3.4 Recovering properties of a rationalizing distribution PΠ

When P is SC-rationalizable, we are also able to extract information about this rationalization

through the properties of pτBqBPB that solve (7). In particular, let SC� be a subset of single-crossing

payoff functions (including all of its strictly increasing transformations) and let

B� � tB P B : there is Π P SC� that rationalizes Bu . (11)

By a straightforward adaptation of the proof of Theorem 2 (see Appendix), we can show that

max
!¸

BPB�
τB : pτBqBPB solves (7)

)
� max

"»
ΠPSC�

dPΠ : PΠ rationalizes P
*

(12)

Notice that the left hand side of this equation is straightforward to compute when B� and B are

known, since it simply involves solving a linear program. Thus we can find the greatest possible
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weight on a given set of payoff profiles, for any distribution that rationalizes P .14 We give two

cases where this exercise is useful, both of which are empirically implemented in Section 5. Other

examples can be found in the Online Appendix A3.

Application 1. Bounds on the role of strategic interaction

While our model allows for the possibility that each player reacts strategically to other players

in the game, it is conceivable that the conditional choice distributions could be explained more

simply, without appealing to strategic effects for one or more players in the game.

To be specific, suppose we wish to check whether it is possible to regard a subgroup N 1 of the

players as nonstrategic. Let SC� be the payoff profiles in SC such that Πi does not depend on y�i

for every i P N 1 and let B� be its corresponding set of group types (as defined by (11)). The types

in B� can be characterized by a stricter version of the RM axiom: a group type is in B� if and only

if it obeys the RM axiom and, for each i P N 1, we require that y2 P Bpx2q, y1 P Bpx1q, and x2i ¥
x1i ùñ y2i ¥ y1i. With this characterization, we can construct B�. If we find that

max
!¸

BPB�
τB : pτBqBPB solves (7)

)
� 1,

we conclude (by (12)) that P can be SC-rationalized without requiring the players in N 1 to be

strategic; on the other hand, if the upper bound is strictly below 1, then we must incorporate

strategic interactions among these players to SC-rationalize P .

Application 2. Probability bounds for Nash equilibrium profiles

Given a strategy profile y and covariate x, we pose the following question: among all the

possible SC-rationalizations of P , what is the greatest fraction of groups which could have y as a

pure strategy Nash equilibrium at x? Here, x P X may or may not be an element of pX, and when

x R pX, the answer to this question provides information on how the game would be played at an

hitherto unobserved covariate value. However, the question is interesting even when x P pX.

14To obtain min
 ³

ΠPSC� dPΠ : PΠ rationalizes P
(
, we use the similarly easy-to-prove identity

min
!¸

BPB0

τB : pτBqBPB solves (7)
)
� min

"»
ΠPSC�

dPΠ : PΠ rationalizes P
*

where B0 �
 
B P B : B can only be rationalized by Π P SC�

(
.
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To see why, notice that there is a distinction between Ppy | xq, the observed fraction of groups

in the population that play y at x, and the fraction of groups for which y is a Nash equilibrium.

The former is typically smaller than the latter because some groups who play strategy profiles

other than y may also have y as a Nash equilibrium.15 The distinction between Ppy | xq and the

greatest possible weight on those groups which have y as a Nash equilibrium at x � x is relevant

because, if the gap is small, then we are sure that changing the equilibrium selection scheme cannot

significantly increase the frequency with which y is played. This means (for example) that a policy

maker who wants y to be played more often must alter payoffs in some way and it is not possible

to simply convince players to coordinate on a different equilibrium. An earlier analysis of questions

of this type can be found in Aradillas-Lopez (2011), which focuses on a different class of games.16

To answer our question, let SC� � tΠ P SC : y P NEpΠ,xqu and let B� be its corresponding set

of group types. We can check whether B belongs to B� by using the RM axiom. Indeed B P B�

if and only if the (possibly) multi-valued group type B defined as follows obeys the RM-axiom:

Bpxq � tBpxq,yu and Bpxq � Bpxq for every x P pXztxu. The proportion of the population which

has y as a PSNE cannot exceed max
 °

BPB� τB : pτBqBPB solves (7)
(

and can equal this number.

Notice that this value exceeds Ppy | xq since B� contains the set tB P B : Bpxq � yu (see (7)).17

15 For example, suppose we observe the distribution of action profiles at an entry game with two firms at a single
covariate value x. Assuming that preferences obey single crossing differences (in the sense of (1)) and are strict, if
pE,Eq or pN,Nq is played by a pair of firms, then it has to be their unique equilibrium, but any pair that plays
pE,Nq may also have pN,Eq as another (albeit unselected) equilibrium. Thus if PpE,N | xq and PpN,E | xq are the
observed probabilities of action profiles pE,Nq and pN,Eq respectively, then the probability that pE,Nq (similarly,
pN,Eq) is a Nash equilibrium profile at x � x is no greater than PpE,N | xq � PpN,E | xq.

16 Although the games considered in Aradillas-Lopez (2011) are referred to in that paper as games with strategic
substitutes/complements, those properties are defined with respect to the monotonicity of the payoff functions in
opponents’ action, rather than the monotonicity of best responses. Thus the class of games treated in that paper is
different from the one we consider. Nonetheless, the key idea behind that paper is captured by our simple example:
under various assumptions on payoff functions, the probability that a given strategy profile y is a Nash equilibrium
when x � x is not simply bounded above by 1, because there are some profiles y1 that cannot coexist with y as
Nash equilibria of a group when x � x. In our model, we also make use of the structure we impose on how payoff
functions vary across covariates, which enables us to say that a group/group type that plays some profile y1 at a
different covariate value px cannot play y at x (see the example in footnote 24). These structural restrictions allow
us to form a nontrivial upper bound on how often y is a Nash equilibria when x � x.

17Our analysis here gives the most optimistic estimate on the possibility of switching the equilibrium action to
y, in the sense that it assumes that every group type which can be rationalized by an element in SC� actually does
have a payoff function profile in SC�. We could also find the most conservative estimate of the proportion of the
population that could switch to y by changing equilibrium selection rules; this is explained in Online Appendix A6.2.
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4 The statistical procedure

This section outlines the statistical procedure that implements the results in the previous section,

which are based on population distributions. The test of SC-rationalizability is explained in Section

4.1 and relies on the statistical hypothesis testing proposed by Kitamura and Stoye (2018). The

efficient implementation of this test when B is large (and cannot be fully listed) uses the column

generation approach proposed in Smeulders et al. (2021). Section 4.2 outlines the procedure (in

essence provided by Deb et al. (2022)) to obtain confidence intervals for the weights on certain

group types; the efficient implementation of this procedure requires a nontrivial extension of the

column generation method in Smeulders et al. (2021) and we provide this in Proposition 3.

4.1 Statistical hypothesis testing

We begin with a matrix re-formulation of the characterization given in Theorem 2. Each generalized

group type B : pXÑ Y can be represented as a vector b � pby,xqY� pX such that by,x � 1 if y P Bpxq
and by,x � 0 otherwise. Conversely, for any b P t0, 1u|Y� pX| corresponds to a generalized group type,

with a vector b P t0, 1u|Y� pX| representing a single-valued) group type if and only if
°

yPY by,x � 1

at every x P pX. Similarly, since P consists of |pX| distributions on Y, it can be captured by the

column vector p P r0, 1s|Y� pX|, where the py,xq-th entry of p is Ppy|xq (and hence,
°

yPY py,x � 1

for each x P pX).

In what follows, we shall abuse notation and use B to denote both the set of group types obeying

the RM axiom and also the vectors corresponding to those types. We denote by B the matrix where

each column represents a group type in B. Theorem 2 states that P is SC-rationalizable if and only

if there is τ P ∆B, the set of distributions on B, that solves Bτ � p. (∆B could be thought of

as elements of the standard p|B| � 1q-simplex.) We would like to test if the data is consistent

with the SC-rationalizability of P . Equivalently, letting PSC � tBτ : τ P ∆Bu (i.e., the set of

SC-rationalizable distributions in vector form), our null hypothesis is

min
ηPPSC

pp� ηq � pp� ηq � 0. (13)

The data set consists of Nx observations of the action profiles at each realization of x P pX. We

assume that Nx{N Ñ ρx P p0, 1q at each x P pX, as N � °
xP pXNx Ñ 8. We denote the empirical
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distribution over action profiles by

Q �
!

Qp� | xq : x P pX)
,

and we estimate P by this sample analog. As in the case with P , we can represent Q by a column

vector q P r0,1s|Y�X| where the py,xq-th entry is equal to Qpy|xq. The test statistic is

JN :� min
ηPPSC

Npq� ηq � pq� ηq � min
τP∆B

Npq�Bτq � pq�Bτq. (14)

As pointed out in Kitamura and Stoye (2018), care is needed to obtain the valid critical value.

In particular, we cannot simply adopt a solution to the problem (14) as the bootstrap estimation

for the empirical choice distribution, due to the possible discontinuity of the limiting distribution

of JN . Addressing this issue involves introducing a tuning parameter and considering the tightened

problem defined below.

Choose B1 � B so that it contains a basis of the space spanned by B, and define ∆B
κN

� 
τ P ∆B : τb ¡ κN{|B1| for all b P B1(, with κN being selected so that κN Ó 0 and

?
NκN Ò 8 as

N Ñ 8.18 Letting PSC
κN

� tBτ : τ P ∆B
κN
u, we adopt

η� � argmin
ηPPSC

κN

Npq� ηq � pq� ηq (15)

as the bootstrap estimator of the empirical choice frequency. Compared to the problem (14),

the feasible set in the minimization problem is tightened by the tuning parameter, with positive

weights required of elements in B1. We then generate a bootstrap sample qprq (for r � 1, 2, . . . , R)

using standard nonparametric bootstrap re-sampling from η� and re-center this sample by settingpqprq :� pqprq � qq � η�. With pqprq we can calculate the bootstrap test statistic

J
prq
N :� min

ηPPSC
κN

Nppqprq � ηq � ppqprq � ηq � min
τP∆B

κN

Nppqprq �Bτq � ppqprq �Bτq. (16)

With the empirical distribution of J
prq
N we can calculate the p-value p � #tJ prqN ¡ JNu{R. The null

18In the original formulation by Kitamura and Stoye (2018), positive weights are required on all elements in B,
which is inconvenient when applying the column generation procedure described later in this subsection. We require
positive weights only for the types in B1. The validity of our approach (which is similar to that in Smeulders et al.
(2021)) is shown in the Online Appendix A5.2.
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hypothesis that q is a sample from some p P PSC is not rejected if the p-value is greater than the

critical value.

A major hurdle in implementing the above test is that the computation of JN and J
prq
N involves

the enumeration of B, which is often too large to compute. We cope with this problem by applying

the column generation procedure in Smeulders et al. (2021). This procedure involves first testing

a more stringent version of the model corresponding to a strict subset B0 of B which is completely

known. For instance, we may choose the ‘starter’ set B0 to be the set of constant types, in which

every player takes the same action regardless of opponents’ actions and covariates; these group

types obviously obey the RM axiom. Then the set B0 is progressively enlarged by including more

group types from B, up to the point where further additions will not improve the model’s ability to

explain the data.

To be precise, let B0 be the matrix where the column vectors are elements of B0. We can then

calculate

JN,0 :� min
τP∆B0

Npq�B0τq � pq�B0τq. (17)

Obviously, JN,0 ¥ JN and we could check if it is possible to decrease JN,0 by including some b P B.

We say that b P B improves B0 if, when b is included in B0, the new value of JN,0 is strictly lower.

The following result, which flows from the convex projection theorem, provides a necessary and

sufficient condition for B0 to be improvable.

Proposition 1. A set of group types B0 is improved by some b P B, if and only if

max
bPB

pq� η0q � pb� η0q ¡ 0, (18)

where η0 � B0τ0 with τ0 � arg minτP∆B0 pq�B0τq � pq�B0τq.

To solve the problem (18) without fully enumerating B, we must find a computational efficient

way of characterizing B. Conveniently for us, the RM axiom — and hence the set B — can be

characterized as solutions to an integer linear programming problem.

Proposition 2. We can construct a matrix C and a column vector θ, both with nonnegative integer

entries, such that for any b P t0, 1u|Y� pX|, we have b P B if and only if Cb ¤ θ.
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The formulae for C and θ are found in our proof of this proposition in the Appendix. Combining

this result with Proposition 1, B0 is improved by some b P B, if and only if

max pq� η0q � pb� η0q, subject to b P t0, 1u|Y� pX| and Cb ¤ θ (19)

is strictly positive. If it is, we add this b to B0 and then repeat the process. In other words, we

recalculate JN,0 and η0 based on the new B0, and try to find another element in B that improves

on B0 by checking if (19) has a strictly positive solution. Since B is finite, this algorithm must

terminate, and at the end we can be sure we have found B0 such that JN,0 � JN .

The column generation procedure described above can be also applied to the computation of

J
prq
N defined by (16). Since the constraint in the problem (16) requires positive weights on B1, this

set needs to be contained in the initial choice of B0.19

Remark 5. In the empirical application discussed in Section 5, we employ some procedures to

reduce computation time. When |pX| becomes large, obtaining the exact solution to (19) can be

hard. In fact, to improve JN,0, it suffices to find b P B such that pq � η0q � pb � η0q ¡ 0. In our

program, we impose a time limit for solving (19) and use the best feasible solution found within

that.20 It is only when this solution satisfies pq� η0q � pb� η0q ¤ 0 that we solve the maximization

problem exactly.

Remark 6. As noted by Smeulders et al. (2021), the computation time can be further reduced by

not always calculating the value of J
prq
N exactly. Indeed, it suffices to determine whether each J

prq
N

is larger or smaller than the critical value JN . Thus we can terminate the procedure for calculating

J
prq
N once a value of J

prq
N,0 becomes lower than JN .

4.2 Estimating weights on selected types

Suppose we have a data set that is consistent with SC-rationalizability (in the sense that the null

hypothesis (13) is not rejected) and would now like to form a confidence interval on
°

bPB� τb, the

19 Note that, even if B0 contains B1, and B1 contains a linear basis of B, the convex hull of B0 need not coincide
with the convex hull of B (though the linear hull of B0 of course coincides with the linear hull of B). So it is still
possible for B0 to be improvable.

20 For example, using Rglpk package on R, our program gives 0.2 seconds for solving (19) at each repetition. This

constraint tends to be binding when pX is large, leading to a large integer programming problem.

24



total weight of a subset of single-crossing group types B� (see Section 3.4). To do this, we follow

the procedure in Deb et al. (2022). The problem of determining whether a given weight of B� falls

within the confidence interval can be determined by testing a suitably modified version of the null

hypothesis (13), with PSC replaced by a different set of distributions. To be specific, suppose we

would like to find the upper bound of the confidence interval. For each β P p0, 1q, we let

PSCpβ;B�q �
#

Bτ : τ P ∆B and
¸

bPB�

τb ¥ β

+
,

and test the null hypothesis

min
ηPPSCpβ;B�q

pp� ηq � pp� ηq � 0 (20)

at some significance level p̄. We then use binary search to obtain the maximal value of β under which

the null hypothesis is not rejected; the resulting maximal value of β corresponds to the supremum

of the 100p1� p̄q% confidence interval of β.

For a given β, the test statistic is

JNpβq :� min
ηPPSCpβ;B�q

Npq� ηq � pq� ηq

� min
τP∆B

Npq�Bτq � pq�Bτq subject to
°

bPB� τb ¥ β. (21)

Once again, it may not be possible to fully enumerate B or B�, and so a version of the column gen-

eration procedure outlined in the previous subsection is needed. This in turn requires an extension

of Proposition 1 which we now explain.

Let B0 � B be such that B0 X B� � H, and let us calculate

JN,0pβq � min
τP∆B0

Npq�B0τq � pq�B0τq s.t.
¸

bPpB0XB�q

τb ¥ β.

We say that B0 is improvable given problem (21), if JN,0pβq ¡ JNpβq. The following proposition is

the counterpart of Proposition 1 and provides a necessary and sufficient condition for a given B0 to

be improvable.

Proposition 3. If the set B0 � B is improvable given problem (21), then there is a pair of types

tb�,bu, with b� P B� and b P B such that
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pq� η0q � pβb� � p1� βqb� η0q ¡ 0, (22)

where η0 � B0τ0 with τ0 being the distribution that achieves JN,0pβq. Conversely, suppose there is

b� P B� and b P B such that (22) holds; then tb�,bu improves B0 given problem (21).

We already know (from Proposition 2) that we can construct a matrix C and a column vector

θ so that b P B if and only if Cb ¤ θ. Suppose that, in addition, we can construct a matrix C�

and a column vector θ� with integer entries so that, for any b P t0, 1u|Y� pX|, we have b� P B� ðñ
C�b� ¤ θ�. Then a pair tb�,bu obeying (22) exists, if and only if the problem

max pq� η0q � pβb� � p1� βqb� η0q (23)

s.t. b, b� P t0, 1u|Y� pX| and

�� C� O

O C

��� b�

b

�¤
�� θ�

θ

�
has a positive optimal value. Note that every B� in our empirical application has the matrix

characterization described above (see Online Appendix A4 for the specific construction). If there

is a pair tb,b�u that improves B0, then we update B0 by including the pair in B0 and recalculate

JN,0pβq. Since B is finite, this process terminates and we obtain JN,0pβq � JNpβq.
To find the valid critical value, we need a suitable tightening that imposes strictly positive

weights on a certain subset of group types. The tightening here must depend on β and its formulation

is rather involved, and so we postpone this discussion to Online Appendix A5.3. That said, once

we have constructed a suitably tightened subset of ∆B by some tuning parameter κN , the rest

of the procedure is similar to that outlined in the preceding subsection. Denoting this subset by

∆B
κN
pβ;B�q and letting

PSC
κN
pβ;B�q �

#
Bτ : τ P ∆B

κN
pβ;B�q and

¸
bPB�

τb ¥ β

+
, (24)

the bootstrap estimator and the recentered bootstrap samples can be obtained as in (15) – (16), after

replacing the sets PSC
κN

and ∆B
κN

by, respectively, PSC
κN
pβ;B�q and ∆B

κN
pβ;B�q. Column generation

can be also applied, in a way similar to its application for calculating JNpβq, with the proviso that

B0 must contain the group types on which the distributions in ∆B
κN
pβ;B�q give positive weight. The

details of the procedure are provided in Online Appendix A5.3.
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5 Empirical illustration

We apply our results in the preceding sections to an entry game using a data set taken from Kline

and Tamer (2016). The data set contains the entry decisions of airlines in 7,882 markets, where a

market is defined as a trip between two airports irrespective of intermediate stops. Airline firms

are divided into two categories: LCC (low cost carriers) and OA (other airlines).21 In Kline and

Tamer’s analysis (and in ours) the two categories are treated as two firms. Thus, in each market,

the two firms, LCC and OA, can either both enter a market, both stay out, or one could enter with

the other staying out.

This data set also contains information on two covariates: market presence (MP) and market

size (MS). Market presence is a market- and airline-specific variable. For each airline and for each

airport, one counts the number of markets that the airline serves from that airport and divide it by

the total number of markets served from that airport by any airline; the market presence variable

for a given market and airline is the average of these ratios at endpoints of that market/trip. The

construction and inclusion of this covariate is not novel and follows Berry (1992). Since the airlines

are aggregated into two firms, the market presence variable is also aggregated: the market presence

for LCC (resp. OA) is the maximum among the actual airlines in the LCC category (resp. OA

category). The second covariate, market size, is a market-specific variable (shared by all airlines in

that market) and is defined as the population at endpoints of the corresponding trip.

Furthermore, Kline and Tamer (2016) discretize these variables, where each of them takes value

1 if the variable is higher than its median value and 0 otherwise. Thus, in our data set, there are

three binary covariates, MPLCC , MPOA, and MS, and markets are partitioned into eight groups

according to realizations of them. Formally, X � t0, 1u3, and in this case, it also holds that pX � X.

Note that MS simultaneously influences the payoffs of both LCC and OA, and hence the covariates

affecting LCC’s payoff can be written as xLCC � pMPLCC ,MSq and, similarly, xOA � pMPOA,MSq.
Observations in the data set can be used to calculate the empirical choice distributions, that

we include in Table 3. It consists of eight blocks, with the markets in each block sharing the same

covariates. For example, there are 1,271 markets with pMPLCC ,MPOA,MSq � p0, 0, 0q, of which

21 The data were collected from the second quarter of the 2010 Airline Origin and Destination Survey (DB1B).
The low cost carriers are AirTran, Allegiant Air, Frontier, JetBlue, Midwest Air, Southwest, Spirit, Sun Country,
USA3000, and Virgin America. A firm that is not a low cost carrier is, by definition, an ‘other airline.’
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pMPLCC ,MPOA,MSq � p0, 0, 0q 1271 markets

QpN,Nq QpN,Eq QpE,Nq QpE,Eq

0.304 0.682 0.006 0.009

pMPLCC ,MPOA,MSq � p0, 1, 0q 763 markets

QpN,Nq QpN,Eq QpE,Nq QpE,Eq

0.190 0.785 0.003 0.022

pMPLCC ,MPOA,MSq � p1, 0, 0q 1125 markets

QpN,Nq QpN,Eq QpE,Nq QpE,Eq

0.194 0.367 0.253 0.186

pMPLCC ,MPOA,MSq � p1, 1, 0q 782 markets

QpN,Nq QpN,Eq QpE,Nq QpE,Eq

0.122 0.542 0.050 0.286

pMPLCC ,MPOA,MSq � p0, 0, 1q 869 markets

QpN,Nq QpN,Eq QpE,Nq QpE,Eq

0.159 0.823 0.001 0.017

pMPLCC ,MPOA,MSq � p0, 1, 1q 1039 markets

QpN,Nq QpN,Eq QpE,Nq QpE,Eq

0.078 0.889 0.000 0.033

pMPLCC ,MPOA,MSq � p1, 0, 1q 677 markets

QpN,Nq QpN,Eq QpE,Nq QpE,Eq

0.106 0.326 0.306 0.261

pMPLCC ,MPOA,MSq � p1, 1, 1q 1356 markets

QpN,Nq QpN,Eq QpE,Nq QpE,Eq

0.055 0.501 0.021 0.423

Table 3: Empirical distribution across each realization of covariates

around 30% are not served by either airline and about 68% are served only by airlines in the OA

category (an action profile is written as pyLCC , yOAq P tE,Nu � tE,Nu). The entries in Table 3

seem ‘reasonable’, in the sense that it appears as though a firm’s entry is encouraged whenever its

market presence is large or the market size is large, and it is deterred by the entry of the other firm.

For example, going from p0, 0, 0q to p1, 0, 0q (so the market presence of LCC has increased), both

QpN,Nq and QpN,Eq fall, while QpE,Nq and QpE,Eq both increase.

Testing SC-rationalizability. Our hypothesis is that, in each market, two firms (LCC and

OA) are playing a pure strategy Nash equilibrium in a game of strategic substitutes with mono-

tone effects from covariates. The payoff function of LCC, say, ΠLCCpyLCC , yOA,MPLCC ,MSq, is

required to obey single-crossing differences in pyLCC ; p�yOA,MPLCC ,MSqq, and similarly, the pay-

off function of OA, ΠOApyOA, yLCC ,MPOA,MSq, is required to obey single-crossing differences in

pyOA; p�yLCC ,MPOA,MSqq. This ensures that a firm’s entry is discouraged by the opponent’s entry

and enhanced by an increase in own covariates. The data set is supposed to arise from a population

of those firms, with unobserved heterogeneity generating a distribution of realizations of payoff

functions Π � pΠLCC ,ΠOAq, which we denote by PΠ, and an equilibrium selection rule.

Employing the statistical test in Section 4.1, we find a p-value of 0.138, and hence, the hypothesis

that the empirical choice frequencies are explained by our modeling restrictions cannot be refuted

at 5% (or 10%) significance level. We choose the tuning parameter κN � a
logNx{106Nx, where
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Nx � minxP pXNx, and the number of bootstrap samples as R � 2000.22 Note that having a p-

value strictly less than 1 means that JN defined in (14) is strictly positive, i.e., there is a strictly

positive distance between our empirical distribution and PSC, the set of (exactly) SC-rationalizable

distributions. Using our R code on a desktop computer with Apple M1 processor and 16 GB RAM,

the p-value was calculated in less than 3 minutes.

In this setting, the set X � pX has exactly eight elements, and hence the number of possible

group types is 48 � 65, 000. In this small environment, it is in fact not difficult to check the RM

axiom for each of these group types. Doing that, we find that only 482 types satisfy single-crossing

(equivalently, satisfy the RM axiom). This gives a sense of the “empirical bite” of our test: the data

set has to be explained by using a very small fraction (less than 1%) of all possible group types.

Significance of strategic interactions. Having established that the data set is (statistically)

SC-rationalizable we can now go on to explore its properties. In particular, we can assess the extent

to which strategic interactions play a role in explaining the data, in the sense discussed in Section

3.4, by considering the sub-classes of single-crossing group types that correspond to: (i) the LCC

firm having a payoff function that is independent of the actions of OA; (ii) the OA firm having

a payoff function that is independent of the actions of LCC; and (iii) both firms having payoff

functions that are independent of the other firm’s action. Applying the procedure explained in

Section 4.2, we find that the greatest possible weights on these three sub-classes of consistent group

types are (i) 0.923, (ii) 0.790, and (iii) 0.789 (within 5% significance level). Since these weights

are all strictly less than 1, we conclude that any SC-rationalization of the data requires strategic

behavior for both LCC and OA firms. The computation time for each case was about 27 minutes.

Probability bounds for equilibrium actions. Under our behavioral hypothesis, the action

profiles pN,Nq and pE,Eq can only be played as the unique equilibrium at any realization of

x � pMPLCC ,MPOA,MSq. On the other hand, when pN,Eq is played, it is possible that pE,Nq
is also a Nash equilibrium of the game. For this reason, the probability that pE,Nq is a Nash

equilibrium of the game can be strictly higher than the observed frequency with which this profile

is played, even after accounting for sampling variability (the same goes for pN,Eq). Applying the

argument in Sections 3.4 and 4.2, we can recover the greatest possible weight on group types in the

22Recall that Nx is the number of observations with covariates x. Our choice of κN largely follows Kitamura and
Stoye (2018).
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pMPLCC ,MPOA,MSq p0, 0, 0q p0, 1, 0q p1, 0, 0q p1, 1, 0q

Action profile pN,Eq pE,Nq pN,Eq pE,Nq pN,Eq pE,Nq pN,Eq pE,Nq

max Prry P NEpΠ,xqs 0.699 0.544 0.815 0.503 0.503 0.644 0.558 0.555

Observed Prob. 0.682 0.006 0.785 0.003 0.367 0.253 0.542 0.050

pMPLCC ,MPOA,MSq p0, 0, 1q p0, 1, 1q p1, 0, 1q p1, 1, 1q

Action profile pN,Eq pE,Nq pN,Eq pE,Nq pN,Eq pE,Nq pN,Eq pE,Nq

max Prry P NEpΠ,xqs 0.841 0.616 0.913 0.496 0.485 0.661 0.523 0.497

Observed Prob. 0.832 0.001 0.910 0.000 0.326 0.306 0.501 0.021

Table 4: Probability bounds for equilibrium action profiles

population which have pE,Nq as a Nash equilibrium at a given covariate value (and similarly for

pN,Eq). These are reported as max Prry P NEpΠ,xqs in Table 4.23

For example at pMPLCC ,MPOA,MSq � p1, 0, 0q, the greatest possible weight on those group

types that may have pN,Eq as a Nash equilibrium of the game is 0.503: this includes types which

are already playing pN,Eq (with observed frequency 0.367) as well as types that are playing pE,Nq
but may have pN,Eq as an alternative Nash equilibrium.24 Thus, even if we allow for equilibrium

selection rules to change, and pN,Eq is chosen whenever it is a PSNE, the frequency with which

pN,Eq is played at p1, 0, 0q will not exceed 0.503. Notice that, in general, max Prry P NEpΠ,xqs is

closer to the observed frequency in the case where y � pN,Eq, while the same gap in the case of

y � pE,Nq is considerably bigger. For y � pN,Eq (and similarly for y � pE,Nq), the calculation

of max Prry P NEpΠ,xqs for all x P pX took around 38 minutes.25

Further tests. The tests that we have done so far do not really put the column generation method

through its paces: the total number of possible group types (48 � 65, 536) is just about small

enough to be completely listed; one could then find all the SC-rationalizable group types using the

RM axiom (of which there are 482) and avoid using column generation altogether.

To check the performance of the column generation method in a ‘larger’ model, we repeat our

analysis with a finer division of the covariates. (A fuller discussion is found in Online Appendix

23To be precise, max Prry P NEpΠ,xqs is the upper limit of the confidence interval on
°

BPB� τ
B where B� is

defined as in Application 2 of Section 3.4.
24 But it is not the case that every single-crossing group type with pE,Nq as a Nash equilibrium at p1, 0, 0q must

also have pN,Eq as a Nash equilibrium at p1, 0, 0q. For example, if the group type chooses pE,Nq at p1, 0, 0q and
pE,Eq at p1, 1, 0q, then pN,Eq cannot be a Nash equilibrium at p1, 0, 0q. On the other hand, there are single-crossing
group types that choose pE,Nq at p1, 0, 0q and pN,Eq at p1, 1, 0q; in these cases, pN,Eq may be a Nash equilibrium
at p1, 0, 0q. The latter types are the ones included in the estimated weight, while the former types are excluded.

25See Online Appendix A6.2 for an estimate of min Prry P NEpΠ,xqs.
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A6.1.) Instead of aggregating covariates into binary variables, we let each of MPLCC , MPOA and MS

take four possible values using quantiles: each variable takes value k�1, if it is in the k-th quartile.

In this way, all markets are partitioned into 43 � 64 covariate values and there is a distribution

of entry decisions at each of them. In this environment, the total number of possible group types

is enormous (464) and the same is true of the number of SC-rationalizable group types.26 While

a direct approach is no longer feasible, the column generation method still works, with the test of

SC-rationalizability finishing in around 3 minutes, including the bootstrap procedure. In this case,

we find that the null hypothesis is rejected with p-value equal to 0.

The conflicting results cast doubts on the robustness of the model to explain choices of airline

firms. In Online Appendix 6.1, we implement the tests for even finer discretizations. Naturally, the

number of markets at each discrete value of the covariate falls as the discretization becomes finer

and so we only use those covariate values that contain a certain minimal number of markets; in

other words, we have a case where pX is a strict subset of X. Broadly speaking (see Online Appendix

A6.1 for details), we find that the hypothesis is supported if the market presence variables remain

binary, even with finer discretizations of market size. Finer discretizations of the market presence

variables lead to rejection of the hypothesis, even when the market size variable remains binary.

The precise reasons for this failure are unclear and requires a more careful analysis. In terms of

the model’s explicit assumptions, the failure could be attributed to a failure of the single-crossing

property on payoff functions, the failure of firms to play PSNE in each market, or the failure of the

conditional independence assumption (especially with finer discretization of the market presence

covariate). There could also be problems having to do with the model’s basic structure, such as

the particular way in which market presence is calculated or the modeling of interaction as a two-

action, two-agent game (which ignores the possible presence of multiple carriers within the LCC or

OA category in each market, the scale of their operations if they enter, or the fact that carriers may

operate and interact in multiple markets and have more complicated payoff functions).27

It is worth noting that the uneven performance of the model with finer discretizations of the

covariates is also detectable when we implement the procedure of Kline and Tamer (2016), which

26 It is straightforward to see that any group type where either pE,Nq or pN,Eq is played at a covariate obeys
the RM axiom. Hence, there are at least 264 (� 3.1� 1019) types obeying the RM axiom.

27The last point is related to the literature on multimarket contact; see, for example, Evans and Kessides (1994).
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assumes conditional independence but has a parametric specification (see Online Appendix A6.1).

The two approaches yield consistent results. In particular, with binary covariates, the data pass

both the Kline-Tamer test and our test; with finer covariates, whenever the model fails our test, it

also fails the Kline-Tamer test (as it should since it tests a more restrictive model).

Appendix

Proof of Theorem 1. It remains for us to show that a generalized group type B : pX Ñ Y is

consistent if it satisfies the RM axiom. For each i P N � t1, 2, ..., nu, we need to find a payoff

function Πi : Yi�Y�i�Xi Ñ R such that (a) Πi obeys the single crossing differences in pyi; y�i, xiq,
and (b) y P Bpxq ùñ y P NEpΠ,xq, and (c) for each py�i, xiq, BRipy�i, xiq is a singleton (even

when xi R proji pX).

For each i P N , let Zi � Y�i �Xi. Since pX and Y are finite sets, the graph of Bpxq, which is

GpBq :�
!
py,xq : y P Bpxq for some x P pX)

, is also a finite set. Hence, it can be written as GpBq �
tpyt,xtq : yt P Bpxtq for t P T u where T � t1, 2, ..., T u is a finite index set. Letting zti :� pyt�i, xtiq
for t P T , each pyt,xtq P GpBq can be written as pyti , ztiq for every i P N .

To obtain a payoff function Πi defined on Yi � Zi p� Yi � Y�i � Xiq, we begin with a family

of single-peaked functions, fi : Yi � T Ñ R satisfying the following properties: (i) fipyti , tq ¡
fipa, tq for all a � yti and a P Yi; and (ii) if ysi � yti then fip�, sq � fip�, tq and if ysi ¡ yti , then

fipa2, sq � fipa1, sq ¡ fipa2, tq � fpa1, tq for all a2 ¡ a1 in Yi. This can be obtained, for example, by

letting fipa, tq � �pa � ytiq2. Then we define Πi : Yi � Zi Ñ R as follows. For each z P Zi, let

T pzq � tt P T : zt ¥ zu Y tt̂u, where t̂ is any index that satisfies yt̂i ¥ yti for all t P T . Since it

contains t̂ at least, T pzq is nonempty. Choose t̃pzq P T pzq such that y
t̃pzq
i ¤ yti for all t P T pzq, and

define Πip�, zq � fip�, t̃pzqq. Although there may be more than one candidate for t̃pzq, by property

(ii) of fi, the value of Πi is not affected by the choice.

We claim that Πip�, zq defined above obeys properties (a) – (c). For property (a), suppose that at

z1, we have Πip�, z1q � fip�, t1q and for z2, we have Πip�, z2q � fip�, t2q. If z2 ¡ z1, then T pz2q � T pz1q,
and so yt

2

i ¥ yt
1

i . By property (ii) of fi, we obtain

Πipa2, z2q � Πipa1, z2q ¥ Πipa2, z1q � Πipa1, z1q for all a2 ¡ a1.
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Thus Πi satisfies increasing-differences, which means it satisfies single crossing differences. For

property (b), notice that, at any zs, we have s P T pzsq and, by the RM axiom, yti ¥ ysi for any

t P T pzsq. It follows that Πip�, zsq � fip�, sq, and so argmaxaPYiΠipa, zsq � ysi . Lastly, property (c)

flows from the single-peakedness of each fip�, tq. QED

Proof of equation (12). If P is SC-rationalizable and there is pτBqBPB that solves (7), then there is

PΠ that rationalizes P such that
³
ΠPSC� dPΠ �

°
BPB� τB; this is clear from the proof of the “if” part

of Theorem 2. Conversely, for any rationalization PΠ of P , we claim there is pτBqBPB that solves

(7) such that
³
ΠPSC� dPΠ ¤ °

BPB� τB. Indeed, construct pτBqBPB in the same way as in the proof

of Theorem 2. Notice that if Π P SC�, then ppB,Πq � 0 for any B R B� and so it follows from (9)

that
°

BPB� ppB,Πq � 1 since ppB,Πq � 0 for any B R B�. This gives us (12). QED

The proof of Proposition 1 requires the following well-known result from convex analysis.

Lemma 1. Let V be a closed convex set in Rn and let r P RnzV . Then there is a unique v� P V
such that }r � v�} � minvPV }r � v}. The point v� is the unique point in V with the property that

pr� v�q � pv � v�q ¤ 0 for all v P V .

Proof of Proposition 1. If for all b P B, we have pp�η0q � pb�η0q ¤ 0, then pp�η0q � pv�η0q ¤ 0 for

all v in the convex hull of B. This implies, by Lemma 1 that the distance between p and any v in

the convex hull of B is again minimized at η0, which means that B0 is not improvable. Conversely,

if there is pb in B such that (18) holds, then, appealing to Lemma 1 again, we know that η0 does

not minimize the distance between p and the convex hull of B0 Y tpbu and pb improves B0. QED

Proof of Proposition 2. For each py,xq P Y � pX, define Rpy,xq � Y � pX such that

Rpy,xq � tpy1,x1q : y � Bpxq ùñ y1 � Bpx1q for all B P Bu.

Recalling the definition of the RM axiom (6), py1,x1q P Rpy,xq holds if there exists some i P N
such that y1i   p¡qyi and py1�i, x1iq ¥ p¤qpy�i, xiq. Impose any linear ranking on the elements of

Y� pX; we define C � pcpy,xq,py1,x1qqY� pX,Y� pX to be a |Y� pX|�|Y� pX| matrix where cpy,xq,py,xq � |pX|
and, if py,xq � py1,x1q, then cpy,xq,py1,x1q � 1 rpy1,x1q P Rpy,xqs. By setting θ � p|pX|, |pX|, . . . , |pX|q
(a column vector of length |Y � pX|), we claim that a single-valued group type b (thought of as a
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column vector) obeys RM axiom if and only if Cb ¤ θ. Indeed, since b is single-valued, we have°
yPY bpy,xq � 1 for all x P pX, which guarantees that pCbqpy,xq ¤ |pX| if bpy,xq � 0. Note that

pCbqpy,xq ¥ cpy,xq,py,xq � |pX| if bpy,xq � 1. If b satisfies the RM axiom, then pCbqpy,xq � |pX| for all

py,xq with bpy,xq � 1; if b violates the RM axiom, then there is pỹ, x̃q with bpỹ,x̃q � 1 such that

pCbqpỹ,x̃q ¡ |pX|. QED

We make crucial use of the following result in our proof of Proposition 3.

Lemma 2. Suppose that B1 � B where B1XB� is nonempty. Let V pB1q be the set such that v P V pB1q
if v � B1τ and

°
bPB1XB� τb ¥ β, where B1 is a matrix representation of B1. Then V pB1q is the

convex hull of vectors of the form βb� � p1� βqb, where b� P B1 X B� and b P B1.

Proof. Clearly, the convex hull of those vectors is contained in V pB1q, so we need only show the

other inclusion. Note that any v P V pB1q can be written as βp°l̄
l�1 tlb

�
l q�p1�βqp

°k̄
k�1 skbkq where

tl, sk ¥ 0,
°l̄
l�1 tl �

°k̄
k�1 sk � 1, b�

l P B�, and bk P B1. By breaking up the convex sums into

smaller parts if necessary, we can, with no loss of generality, assume that tl � sk and l̄ � k̄. Then

v � β

�
ļ̄

l�1

tlb
�
l

�
� p1� βq

�
ļ̄

l�1

tlbl

�
�

ļ̄

l�1

tl rβb�
l � p1� βqbls ,

which establishes our claim. QED

Proof of Proposition 3. Note that JN,0pβq is the distance between q and V pB0q and this distance is

achieved at η0 P V pB0q. If, for all βb� � p1� βqb where b� P B� and b P B, we have

pq� η0q � pβb� � p1� βqb� η0q ¤ 0,

then pq� η0q � pv � η0q ¤ 0 for all v P V pBq, by Lemma 2. This in turn means, by Lemma 1, that

B0 is not improvable given problem (21). Conversely, suppose that there is a pair of group types!pb�, pb), with pb� P B� and pb P B, such that (22) holds, then, by Lemma 1, η0 does not minimize

the distance between q and the convex hull of V pB0q and βpb��p1�βqpb. We conclude that
!pb�, pb)

improves B0 given problem (21). QED
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Online Appendix

A1. Connection to the linear model

A1.1. An SC-rationalizable distribution inconsistent with the linear model

As we pointed out in Section 2 in the main paper, there is a set of population distributions P �
tPpy|xquxP pX that is SC-rationalizable, but not compatible with the linear specification often adopted

in the literature. We now consider a closely related example of such a set of distributions, but with

exactly the same framework as the entry game in Section 5 of the main paper. That is, N � t1, 2u,
yi P tN,Eu, and xi � pMPi,MSq P t0, 1u � t0, 1u for i � 1, 2, with the value of MS being shared by

both players.

The set of distributions P summarized in Table A.1 is SC-rationalizable (one can confirm this

using a part of our program). However, it is inconsistent with pure strategy Nash equilibrium play

under the following specification of payoff functions. For i � 1, 2, we assume that the payoff of not

entering (N) is always zero and the payoff of entering (E) is given by

πipE, y�i, xi, εq � αi � βi MPi � γi MS� δi1py�i � Eq � εi, (a.1)

with pβi, γiq ¡ 0 and δi   0. In addition, suppose that the joint distribution of pε1, ε2q is absolutely

continuous and fully supported, which is satisfied by many distributions employed in the literature

(such as the joint normal distribution).

To see the inconsistency, it suffices to look at the subtables of Table A.1 with pMP1,MP2,MSq �
p0, 0, 1q, and p0, 1, 1q. Suppose by way of contradiction that this set of distribution is explained as

Nash equilibrium play under the payoff functions specified by (a.1). Then, it must hold that β2 � 0,

since PpN,N |0, 1, 1q � PpN,N |0, 0, 1q � 0. Indeed, letting µ be the induced probability measure of

pε1, ε2q, this difference is equal to the difference between

µ ptpε1, ε2q : α1 � γ1 � ε1   0 and α2 � β2 � γ2 � ε2   0uq

and

µ ptpε1, ε2q : α1 � γ1 � ε1   0 and α2 � γ2 � ε2   0uq .
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pMP1,MP2,MSq � p0, 0, 0q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.250 0.250 0.333 0.167

pMP1,MP2,MSq � p0, 1, 0q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.167 0.333 0.167 0.333

pMP1,MP2,MSq � p1, 0, 0q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.167 0.250 0.416 0.167

pMP1,MP2,MSq � p1, 1, 0q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.083 0.333 0.250 0.333

pMP1,MP2,MSq � p0, 0, 1q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.083 0.416 0.250 0.250

pMP1,MP2,MSq � p0, 1, 1q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.083 0.333 0.167 0.416

pMP1,MP2,MSq � p1, 0, 1q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.083 0.333 0.250 0.333

pMP1,MP2,MSq � p1, 1, 1q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.083 0.250 0.167 0.500

Table A.1: An SC-rationalizable P inconsistent with the linear model

Then, our hypothesis on the distribution ensures that β2 � 0. On the other hand, we also have

PpE,E|0, 1, 1q � PpE,E|0, 0, 1q ¡ 0, which implies that the difference between

µ ptpε1, ε2q : α1 � γ1 � δ1 � ε1 ¥ 0 and α2 � β2 � γ2 � ε2 ¥ 0uq

and

µ ptpε1, ε2q : α1 � γ1 � δ1 � ε1 ¥ 0 and α2 � γ2 � ε2 ¥ 0uq

is positive. This, in turn, implies that β2 ¡ 0, contradicting the preceding argument. Note that,

here, we only use the frequencies of pN,Nq and pE,Eq, which always arise as unique equilibria, and

hence a selection scheme from multiple equilibria does not matter.

A1.2 Comparison based on simulation data

We heve shown that the set of distributions depicted in Table A.1 is SC-rationalizable, but incompat-

ible with the parametric specification in (a.1). In what follows, using simulation data, we examine

whether this difference is in fact empirically relevant. Specifically, we generate random samples

using the set of distributions in Table A.1 and check how often SC-rationalizability is rejected and

how often the linear specification is rejected. In Kline and Tamer (2016), they provide a procedure

to estimate the identified set of coefficients in (a.1); i.e. θ :� pα1, β1, γ1, δ1;α2, β2, γ2, δ2q. As they

pointed out in their paper, their procedure can also work as a test for model (mis-)specification by

2



checking whether the estimated identified set is nonempty. We also implement our test to the same

set of samples to check if each of them is actually supported by our model.

Before proceeding to the result, we briefly refer to how Kline and Tamer’s test works. They

consider a nonegative function that summarizes the relationship between P and θ, say, M pθ,Pq,
under suitable sign restrictions (in the current case, pβi, γiq ¡ 0 and δi   0 for i � 1, 2). This function

is designed so that θ can generate P if and only if M pθ,Pq � 0. The set ΘI � tθ : M pθ,Pq � 0u is

then interpreted as the identified set for θ. To deal with empirical distributions Q, they introduce

an exogenous tolerance parameter ρ ¡ 0 so that the set estimation of ΘI is such that pΘI �
tθ : M pθ,Qq ¤ ρu , and one can conclude that the specification is valid if pΘI � H. Since there is

no guide in the paper to select this parameter, we report results for the tolerance parameter they

use, which is ρ � 0.075.

Recall that the structure of the model behind P in Table A.1 is the same as the empirical data

set in Section 5 of the main paper. We generate 100 samples from P such that each sample has

the same size N � 7882 and the same fraction of realization of each x P t0, 1u3 as the data set in

Section 5. We find that 92 samples (out of the 100) pass our test with 5% significance level, while

Kline and Tamer’s procedure cannot find nonempty identified sets for any of these samples (i.e. all

samples fail their test). Thus, the linear specification itself is rejected and having a nonparametric

test that allows for nonlinearity is important.

Remark. Note that the preceding result suggests that Kline and Tamer’s test has very good

testing power, since their test actually rejects samples generated by P , which is inconsistent with

the linear model. It may be interesting to see whether our test can also reject samples generated by

distributions inconsistent with our model. To check this, we generated 100 samples from another

set of distributions, which we shall refer to as P 1, which is not SC-rationalizable. In particular, to

see whether our test can detect subtle inconsistency, we use P 1 summarized in Table A.2, which is

not too different from P in Table A.1. In fact, this P 1 is equal to the empirical distribution of one

of the samples from P , with a p-value is equal to 0.01. Out of 100 samples drawn from P 1, we find

that 97 samples fail our test, which implies that our test also has reasonably strong testing power.
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pMP1,MP2,MSq � p0, 0, 0q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.255 0.265 0.337 0.143

pMP1,MP2,MSq � p0, 1, 0q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.151 0.336 0.193 0.330

pMP1,MP2,MSq � p1, 0, 0q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.167 0.240 0.441 0.152

pMP1,MP2,MSq � p1, 1, 0q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.078 0.332 0.254 0.337

pMP1,MP2,MSq � p0, 0, 1q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.080 0.445 0.233 0.242

pMP1,MP2,MSq � p0, 1, 1q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.093 0.319 0.155 0.434

pMP1,MP2,MSq � p1, 0, 1q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.088 0.302 0.245 0.366

pMP1,MP2,MSq � p1, 1, 1q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.087 0.263 0.164 0.487

Table A.2: Non SC-rationalizable distribution P 1

A2. Multi-dimensional action spaces

In the main paper, we assume that the set of actions of each player i P N � t1, 2, ..., nu, Yi, is a

finite and totally ordered (in other words, it is a finite chain). In this section, we show that all our

results are valid, as long as every Yi is a product of finite chains. In what follows, let for each i P N ,

Yi � �Kpiq
k�1 Yik with every Yik is a finite chain.

As shown by Milgrom and Shannon (1994), the counterpart of the Basic Theorem for multi-

dimensional action spaces requires quasisupermodularity in addition to the single crossing differ-

ences.1 To be precise, BRipy�i, xiq � argmaxyiPYi Πipyi,y�i, xiq is monotone in py�i, xiq if the

payoff function Πi is quasisupermodular in yi and obeys single crossing differences in pyi; y�i, xiq.
Given that Yi is assumed to be a product of chains, it is straightforward to show that the com-

bination of quasisupermodularity and condition (4) is equivalent to the following stronger ver-

sion of single crossing differences: for every nonempty set J � t1, 2, . . . , Kpiqu, y2iJ ¡ y1iJ and

py2ip�Jq,y2�i, x2i q ¡ py1ip�Jq,y1�i, x1iq,

Πi

�
y2iJ , y

1
ip�Jq,y

1
�i, x

1
i

� ¡Πi

�
y1iJ , y

1
ip�Jq,y

1
�i, x

1
i

�
(a.2)

ùñ Πi

�
y2iJ , y

2
ip�Jq,y

2
�i, x

2
i

� ¡ Πi

�
y1iJ , y

2
ip�Jq,y

2
�i, x

2
i

�
.

1 Let A be a lattice. A function F : A Ñ R is quasisupermodular if F pa1 _ a2q � F pa2q ¡ p¥q 0 whenever
F pa1 ^ a2q � F pa1q ¡ p¥q 0.
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Note that, here, yiJ and yip�Jq denote the subvectors on J and its complement respectively that

together constitute yi. In other words, if over some subset of dimensions J , the agent prefers a higher

action y2iJ to a lower one y1iJ , keeping fixed the actions on the other dimensions and the covariates,

then that preference is maintained if actions on the other dimensions and/or the covariates are

raised. Let SC be the set of profiles of payoff functions Π � pΠ1,Π2, ...,Πnq in which every Πi obeys

the single crossing differences in the sense of (a.2). The following result is the multi-dimensional

analog to the Basic Theorem in the main paper.

Basic Theorem’. If Π P SC, the family of games tG pΠ,xq : x P Xu has the following properties:

(i) BRipy�i, xiq is increasing in py�i, xiq for each i P N and

(ii) NE pΠ,xq is non-empty.

The notions of (generalized) group types, single crossing group types and the RM axiom can all

be straightforwardly extended to the case where each player has a multidimensional action space.

With this theorem, It is clear that all our notions can be trivially adjusted to the current setting

using exactly the same notation. It is also easy to see that all our results are valid, if the RM axiom

still characterizes a group type consistent with the model even in multi-dimensional setting. In the

rest of this section, we show that this is affirmative:

The next results states that Theorem 1 can be also extended to the case with multi-dimensional

action spaces.

Theorem A.1. A generalized group type B : pX Ñ Y is a single-crossing group type if and only if

it satisfies the RM axiom.

Proof. The Basic Theorem guarantees that if B is a single-crossing group type, then it obeys

the RM axiom. It remains for us to show the converse. Our strategy is to explicitly construct

payoff functions that rationalize B and satisfies single crossing differences in the sense of (a.2). Our

strategy is to construct a payoff function Π : Yi �Y�i �Xi Ñ R of the form

Πipyi,y�i, xiq �
Kpiq̧

k�1

Πikpyik,y�i, xiq, (a.3)

5



with each Πikpyik,yt�i, xtiq having increasing differences: for every y2ik ¡ y1ik, and py2�i, x2i q ¡ py1�i, x1iq,

Πikpy2ik,y2�i, x2i q � Πikpy1ik,y2�i, x2i q ¥ Πikpy2ik,y1�i, x1iq � Πikpy1ik,y1�i, x1iq. (a.4)

It is easy to see that, then, Πi also obeys the increasing differences, which in turn implies single

crossing differences in the sense of (a.2). We also ensure that for each py�i, xiq, BRipy�i, xiq is a

singleton for every xi P Xi.

Similar to the proof of Theorem 1 in the main paper, we introduce the following notation.

For each i P N , Zi � Y�i � Xi. Since pX is finite, gathering together with the finiteness of

every Yi, the graph of Bpxq, which we represent as GpBq :�
!
py,xq : y P Bpxq for some x P pX)

is also finite. Hence, with a suitable finite set of indices T � t1, 2, ..., T u, it can be written as

GpBq � tpyt,xtq : yt P Bpxtq for some t P T u. Notice that, letting zti :� pyt�i, xtiq for t P T , each

pyt,xtq P GpBq can be written as pyti , ztiq for every i P N .

Repeating the procedure in the proof of Theorem 1 in the main paper, for every i P N and

k � 1, 2, ..., Kpiq, we obtain Πik : Yik � Zi Ñ R such that Πipy2ik, z2q � Πipy1ik, z2q ¥ Πipy2ik, z1q �
Πipy1ik, z1q for all y2ik ¡ y1ik, and that ytik � argmaxyikPYik Πikpyik, ztiq for every t P T . (Just replace

Yi there with Yik.) Using these Πik’s, it is clear that for every t P T , a multi-dimensional action

yti � pyti1, ..., ytiKpiqq is the unique maximizer of Πipyi, ziq �
°Kpiq
k�1 Πikpyik, ziq at zti for every t P T .

Lastly, with Yi taking only finitely many values, we can always guarantee that Πip�, zq has strict

preference over Yi at every value of Zi by perturbing fik if necessary. QED

A3. More results on inference and predictions

This section contains results omitted from Section 3.4 of the main paper. In the first subsection,

we explain how we can obtain a tight bound on the probability that an agent has a given ranking

between a pair of actions. The second subsection expands on the discussion of Nash equilibrium

predictions in Section 3.4 (Application 2) and also establishes that the set of Nash equilibrium

predictions increases with the covariate, in a sense related to first order stochastic dominance.

Throughout we shall assume that P � tPp� | xquxP pX is SC-rationalizable. Recall (from Theorem

2) that P is SC-rationalizable if and only if there exists a distribution τ � pτBqBPB on B (the set of

6



group types obeying the RM axiom) such that

Ppy|xq �
¸

tBPB: Bpxq�yu
τB for all y P Y and x P pX. (a.5)

A3.1. Predicting player preferences

We are interested in estimating the proportion of groups in the population where agent i prefers

some action y2i over another action y1i, when the covariate takes a specific value x�i and other players

are playing a given profile of strategies y��i. In formal terms, letting z� � py��i, x�i q, we would like

to identify the maximal and minimal possible probabilities of

S � tΠ P SC : Πi satisfies Πipy2i , z�q ¡ Πipy1i, z�)u. (a.6)

Letting py,xq P Y� pX so that y � pyi,y��iq and x � px�i ,x�iq, it is clear that PrpSq ¥ Ppy|xq. But,

in fact, we can obtain a sharper lower bound for PrpSq by exploiting the assumption that players

have single crossing payoff functions.

Proposition A.1. Suppose that P � tPp�|xquxP pX is SC-rationalizable by some distribution PΠ.

Then for S defined by (a.6),

mpy2i , y1iq ¤
»
S

dPΠ

where mpy2i , y1iq is defined as follows:

• if y2i ¡ y1i then mpy2i , y1iq � min
°

BPB τ
B subject to τ solving (a.5), with

B � tB P B : Bpxq � py2i ,y�iq and py�i, xiq ¤ z� for some x P pX u; (a.7)

• if y2i   y1i then mpy2i , y1iq � min
°

BPB τ
B subject to τ solving (a.5), with

B � tB P B : Bpxq � py2i ,y�iq and py�i, xiq ¥ z� for some x P pX u. (a.8)

Proof. We consider the case where y2i ¡ y1i, since the case where y2i   y1i proceeds in analogous
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fashion. Let

S 1 � tΠ P SC : Π rationalizes some group type in Bu,

where B is defined by (a.7). Then, for each Π P S 1 and B P B rationalized by it, there exists some

x P pX for which Bpxq � py2i ,y�iq and py�i, xiq ¤ z�, and Πipy2i ,y�i, xiq ¡ Πipy1i,y�i, xiq. Since

py�i, xiq ¤ z� and Πi obeys single-crossing differences, the above implies that Πipy2i , z�q ¡ Πipy1i, z�q.
Thus, the weight on S 1 should be weakly smaller than that on S, and we conclude that

¸
BPB

τB �
¸
BPB

»
PpB|ΠqdPΠ �

» ¸
BPB

PpB|ΠqdPΠ ¤
»
S1
dPΠ ¤

»
S

dPΠ,

where PpB|Πq stands for the (unobserved) probability that B realizes conditional on Π. Note that

the first equality follows, since for each B, τB � ³
PpB|ΠqdPΠ holds whenever τ solves (a.5), that

the penultimate inequality holds, since
°

BPB PpB|Πq does not exceed 1 and equals 0 if Π R S 1,
and that the final inequality flows from S 1 � S. Given that τ must obey (a.5), a lower bound on°

BPB τ
B is mpy2i , y1iq, which proves our claim. QED

Since there is typically more than one distribution PΠ that SC-rationalizes P , the probability

of S would typically only be partially identified. Proposition A.1 says that there is a uniform lower

bound on the probability of S, which is mpy2i , y1iq. It follows immediately from this proposition that

there is also a uniform upper bound on the probability of S, which is 1 � mpy1i, y2i q and thus we

conclude that for any PΠ that rationalizes P ,

mpy2i , y1iq ¤
»
S

dPΠ ¤ 1�mpy1i, y2i q. (a.9)

We can calculate mpy2i , y1iq and mpy1i, y2i q from the conditional choice distributions by solving the

relevant linear program. The next result strengthens Proposition A.1 by showing that the bounds

in (a.9) are tight.

Proposition A.2. There is a distribution PΠ with support on SC that rationalizes P and satisfies

mpy2i , y1iq �
»
S

dPΠ; (a.10)
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similarly, there is another distribution PΠ with support on SC that rationalizes P and satisfies

»
S

dPΠ � 1�mpy1i, y2i q. (a.11)

Proof. Notice that (a.11) is equivalent to there being a distribution PΠ with support on SC such

that
³
Ŝ
dPΠ � mpy1i, y2i q where

Ŝ � tΠ P SC : Πi satisfies Πipy2i , z�q   Πipy1i, z�)u.

Therefore, to prove (a.9), it suffices to establish (a.10).

We first consider the case where y2i ¡ y1i. Suppose that τ � τ solves min
°

BPB τ
B subject

to τ satisfying (7) in the main paper, with B given by (a.7), so that mpy2i , y1iq �
°

BPB τ
B. We

know from our proof of Theorem 2 (see the discussion immediately preceding the statement of the

theorem in Section 3.2) that P can be rationalized by a distribution P�
Π that gives weight of τB

to a profile ΠB P SC that rationalizes B; by taking strictly increasing transformations if necessary,

we can guarantee that ΠB � ΠB1

for any B � B1. If B P B, then any ΠB that rationalizes B will

satisfy ΠB
i py2i , z�q ¡ ΠB

i py1i, z�q, so
³
S
dP�

Π ¥ mpy2i , y1iq. We claim that (a.10) in fact holds for the

distribution P�
Π. To show this, it suffices to prove that if B R B then there is ΠB P SC rationalizing

B such that ΠB
i satisfies

ΠB
i py2i , z�q   ΠB

i py1i, z�q, (a.12)

so that ΠB R S. In what follow, we fix some B P BzB and explicitly construct ΠB that rationalizes

B and Πi satisifes (a.12).

Since B is chosen from B, the existence of Π P SC that rationalizes it is ensured. Hence, the

only issue is whether we can find Π so that Πi obeys (a.12). To construct such Πi, we start from

specifying the ordinal contents of it. Let us define Z :� Y�i�projiX, and denote a typical element

py�i, xiq by z. For z � py�i, xiq, if there is some x P pX such that xi is the i-th component of it and

y�i is specified by Bpxq, then we denote it by zpxq. Similarly, when yi P Yi is specified by Bpxq at

some x P pX, then we denote it by yipxq. Now, define the binary relation ¡ on Yi�Z as follows: for

any pair pȳi, zq and pŷi, zq with ȳi ¡ ŷi,
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(i) pȳi, zq ¡ pŷi, zq, if there is x P pX for which zpxq ¤ z and yipxq � ȳi.

(ii) pŷi, zq ¡ pȳi, zq, if there is x P pX for which zpxq ¥ z and yipxq � ŷi.

(iii) pŷi, zq ¡ pȳi, zq, for all other cases.

We claim that the above defined ¡ has the following properties: (P1) ¡ rationalizes the group

type B; (P2) py1i, z�q ¡ py2i , z�q; (P3) any two distinct pȳi, zq and pŷi, zq are strictly comparable;

(P4) ¡ is transitive on Yi � tzu for any z P Z; (P5) ¡ has the single-crossing property in the

sense that if py��i , zq ¡ py�i , zq for some y��i ¡ y�i then py��i ,rzq ¡ py�i ,rzq for any rz ¡ z. Assuming

that these properties hold, it is clear that any function Πi that represents ¡ (in the sense that

Πipy��i , zq ¡ Πipy�i , zq whenever py��i , zq ¡ py�i , zq) will be a payoff function that obeys single-crossing

differences, rationalizes i’s actions, and (because of (P2)) satisfies (a.12). Note that the existence

of a representation for ¡ is clear since ¡ satisfies (P3) and (P4) and Yi is a finite set.

(P1) follows from parts (i) and (ii) of the definition of ¡ and (P5) from part (i). Notice that it

follows immediately from the definition of ¡ that either pȳi, zq ¡ pŷi, zq or pŷi, zq ¡ pȳi, zq must hold,

for any ŷi   ȳi. Furthermore, since B is chosen from B, due to the RM axiom, they cannot hold

simultaneously because conditions (i) and (ii) in the definition of ¡ cannot both be satisfied. Thus

we have established (P3). Since B R B, we know that for y2i and y1i, we cannot have py2i , z�q ¡ py1i, z�q
as a result of (i) holding. Therefore, we must have py1i, z�q ¡ py2i , z�q, which is (P2). It remains for

us to show (P4). Suppose instead that transitivity is violated. Then there must be y�i , y
��
i , y���i ,

and z such that y��i ¡ y�i , y
���
i and py�i , zq ¡ py��i , zq ¡ py���i , zq. By definition, py��i , zq ¡ py���i , zq

can only occur if there is z1 ¤ z and x P pX such that z1 � zpxq and y��i � yipxq. But this also

implies that py��i , zq ¡ py�i , zq, which means (by (P3)) that we cannot have py�i , zq ¡ py��i , zq.
To recap, we have shown that if y2i ¡ y1i then the distribution P�

Π rationalizes the data and

satisfies (a.10). It remains for us to prove the same result for y2i   y1i. Using an analogous proof

strategy, we need to show that for any B R B, we can find ΠB P SC rationalizing B such that ΠB
i

satisfies (a.12) and so Π R S. The proof proceeds by defining ¡ in the following way: for any

pair pȳi, zq and pŷi, zq with ŷi   ȳi, (i) if there is x P pX such that zpxq ¤ z and yipxq � ȳi, then

pȳi, zq ¡ pŷi, zq; (ii) if there is x P pX such that zpxq ¥ z and yipxq � ŷi, then pŷi, zq ¡ pȳi, zq; (iii)

if neither (i) nor (ii) holds then pȳi, zq ¡ pŷi, zq. In other words, the definition is the same as the
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one for the other case, except that (iii) has been modified. One could check that (P1) to (P5) hold

and, in particular, (the new version of) (iii) guarantees (P2) since we now assume y2i   y1i. With

these properties on ¡, there is a function Πi that represents ¡ and it will be a payoff function that

obeys single-crossing differences, rationalizes i’s actions, and satisfies (a.12). QED

A3.2. Nash Equilibrium predictions

In Section 3.4 of the main paper we posed the following question: given a strategy profile y and

covariate x, what is the greatest possible fraction of groups which have y as a pure strategy Nash

equilibrium at x, among all the possible SC-rationalizations of P? In this section, we pose a more

general question: as a result of Nash equilibrium play with monotone best responses, what are the

possible distributions of joint actions at the covariate value x? In formal terms, this amounts to

identifying the set of conditional distributions Pp�|xq such that the augmented set of distributions

P Y tPp�|xqu is still SC-rationalizable.

Let B : txu Y pX Ñ Y be a group type defined on the enlarged domain txu Y pX. Let rB be the

set of all group types defined on this domain that obey the RM axiom; obviously this set is finite.

Applying Theorem 2, we know that P Y tPp�|xqu is SC-rationalizable if and only if we can find a

probability distribution rτ � prτBqBP rB over rB such that

Ppy|xq �
¸

tBP rB : Bpxq�yu
τ̃B for each y P Y and x P pX, and (a.13)

Ppy|xq �
¸

tBTP rB : Bpxq�yu
τ̃B for each y P Y. (a.14)

Note that the left hand side of the equations in (a.13) are distributions in P , so those equations

constitute conditions that rτ has to satisfy. For any rτ that satisfies those conditions, the resulting

Pp�|xq obtained from (a.14) is a predicted distribution at x. In other words, if we let Ppxq be the

set of predicted distributions at x, then Pp�|xq is in Ppxq if and only if there is rτ that solves (a.13)

and (a.14). Since the conditions are linear, Ppxq is a convex set and its properties can be found by

further investigating the linear program.

The following result states that Ppxq is nonempty so long as P is SC-rationalizable; in other

words, that there is a solution to (a.13) and (a.14). This requires a short proof using the Basic

Theorem. The result also tells us that Ppxq is, in a sense, increasing with respect to first order
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stochastic dominance.2

Proposition A.3. Suppose P � tPp�|xquxP pX is SC-rationalizable. Then Ppxq is nonempty for any

x P X and has the following monotone property: if px ¡ x, then for any Pp�|xq P Ppxq there is

Pp�|pxq P Pppxq such that Pp�|pxq ¥FSD Pp�|xq and for any Pp�|pxq P Pppxq there is Pp�|xq P Ppxq such

that Pp�|pxq ¥FSD Pp�|xq.

Proof. If P is SC-rationalizable, then we know from the proof of Theorem 2 that it can be

rationalized by some distribution PΠ with a finite support in SC. For each Π in that sup-

port, the Basic Theorem tells us that NEpΠ,xq is nonempty. Choose npΠq in NEpΠ,xq. Let

πpyq � tΠ P SC : npΠq � yu. Then the distribution on Y where Ppy|xq � ³
πpyq

dPΠ for all y P Y

is in Ppxq and so Ppxq is nonempty.

We show that if Pp�|xq P Ppxq, then there is Pp�|pxq P Pppxq such that Pp�|pxq ¥FSD Pp�|xq ifpx ¡ x. The (omitted) proof of the other case is similar. Since Pp�|pxq P Pppxq, there is a distribution

PΠ with a finite support in SC and an equilibrium selection rule λ̄ p�|Π,xq (for x P txu YX) that

rationalizes P and satisfies Ppy|xq � ³
λ̄ py|Π, x̄q dPΠ for all y P Y. Let λ̂ be a new equilibrium

selection rule where λ̂ p�|Π,xtq � λ̄ p�|Π,xq for x P pX and, in the case where x � x, we define λ̂

in the following manner: for each y1 in NEpΠ,xq for which λ̄py1|Π,xq ¡ 0, choose y2 in NEpΠ, pxq
such that y2 ¥ y1 and set λ̂py2 | Π, pxq � λ̄py1|Π,xq. We know that y2 exists because the set of

pure strategy Nash equilibria of a game with strategic complements admits a largest element and a

smallest element and both are increasing with x (see Milgrom and Roberts (1990)). For any y P Y

not assigned a positive probability in this manner, set λ̂py|Π, pxq � 0. In this way, the distribution

given by Ppy|pxq � ³
λ̂ py|Π, pxq dPΠ for all y P Y is in Pppxq and first order stochastically dominates

Pp�|xq. QED

A4. Matrix representation of B�

We outline how we obtain the matrix characterization of B� referred to in Section 3.4, which is in

turn needed to implement the estimation we describe in Section 4.2.

2 For two distributions ν and θ on a Euclidean space, we say that ν first order stochastically dominates θ if³
C
dνpyq ¥

³
C
dθpyq for all measurable sets C that are upward comprehensive, i.e., if y P C then z P C for any z ¥ y.

It is known that this holds if and only if
³
fpyqdνpyq ¥

³
fpyqdθpyq for all increasing real-valued functions f .
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Significance of strategic interactions. We need to construct the set of group types, B�, for

which a subset of agents, N 1 � N , have payoff functions that do not depend on the strategies of

any other agent. As explained in Section 3.4, these group types can be characterized by a stronger

version of the RM axiom: for each i P N 1, y2 P Bpx2q, y1 P Bpx1q, and x2i ¡ x1i ùñ y2i ¥ y1i . The

standard RM axiom is required for the other agents. In this case, the matrix C� and the column

vector θ� that characterize B� can be constructed similarly to C and θ in the case of B (as provided

in Proposition 2). We only need to incorporate in the definition of Rpy,xq the variation of the RM

axiom.

Probability bounds for equilibrium actions. For a given y P Y and x P X, let B� be the set

of group types that can support y as a Nash equilibrium action profile at x � x. As referred to in

Section 3.4, a group type B is contained in B�, if and only if the (possibly) multi-valued group type

B : pXY txuÑ Y defined as follows obeys the RM-axiom: let B be so that Bpxq � Bpxq Y tyu and

Bpxq � Bpxq for every x P pXztxu. (Note that Bpxq � tyu, if x R pX.) Using the vector notation of

B we can subsequently define the set Rpy,xq as follows

Rpy,xq �
!
py,xq P Y � pX : bpy,xq � 1 ùñ bpy,xq � 0 for all b P B�

)
.

Recalling the definition of the RM-axiom, py,xq P Rpy,xq, if and only if there exists an agent i

such that py�i, xiq ¡ p qpy�i, xiq and yi   p¡qyi.
Using this, in turn, define a vector ζ P t0, 1u|Y� pX| such that for each py,xq P Y � pX, ζpy,xq �

1 ppy,xq P Rpy,xqq. Then, let C� be a p|Y � pX| � 1q � |Y � pX|-matrix such that the first |Y �pX| � |Y � pX|-matrix equals the matrix C constructed in the proof of Proposition 2 (in the main

paper), and the additional p|Y � pX| � 1q-th row is equal to ζ (defined above). Finally, let the

p|Y � pX| � 1q-dimensional column vector θ� be such that θ� � pθ, 0q, where θ is as defined in the

proof of Proposition 2 in the main paper. It follows that, a given group type b P B is in the set

B� if and only if C�b ¤ θ�. This inequality ensures that Cb ¤ θ, which is equivalent to b obeying

RM axiom, and ζ � b ¤ 0, which is in turn equivalent to b not containing a behavior contradicting

py,xq in terms of the RM axiom on the extended domain.
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A5. Omitted details from statistical tests

A5.1. Key lemma by Kitamura and Stoye (2018)

The bootstrap procedures with tightening a lá Kitamura and Stoye (2018) (including Smeulders

et al. (2021), Deb et al. (2022), and ours) largely depend on Lemma 4.1 in Kitamura and Stoye

(2018). It is worth restating the lemma here, given its relevance to what we are doing.

Letting B be an m� n matrix, a convex cone generated by B is represented as

A � tBτ : τ ¥ 0u, (a.15)

which is referred to as the V-representation (meaning Vertex) of a convex cone. By Minkowski-

Weyl duality, A has an alternative representation, which is called the H-representation (meaning

Hyperplane) such that

A � tp P Rm : Dp ¤ 0u (a.16)

for some l �m matrix D. In the constraints in (a.16), some are inequality conditions while others

are in fact equality conditions. To distinguish them, we let

D �
��D¤

D�

�� ,
where D¤ and D� correspond respectively to the inequality and equality constraints. Abusing

notation, we sometimes write d P D¤ to represent that d is a row vector of D¤, and the same goes

for D�. Note that d P D¤ means the existence of some p P A such that d � p   0, while, for each

d P D�, it holds that d � p � 0 for all p P A.

Kitamura and Stoye (2018) shows that the tightening of a convex cone in the V-representation

is inherited by the H-representation in the following sense.

Lemma A.1. Let A be a convex cone represented as (a.15) and (a.16) using the matrices B and D.
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For κ ¡ 0, define Aκ such that

Aκ �
!
Bτ : τ �

�κ
n

	
In ¥ 0

)
, (a.17)

where In is the n-dimensional vector of 1’s. Then, Aκ can be represented as

Aκ �
 
p P Rm : D¤p ¤ �κu and D�p � 0

(
, (a.18)

with u being a strictly positive vector (the length of |D¤|).

It is worth noting that the lemma ensures the dual representation (a.18) using the same D¤

and D� as the H-representation (a.16) of the original convex cone A. We rely on Theorem 4.2

in Kitamura and Stoye (2018) and Theorem 4 in Deb et al. (2022) to ensure the validity of the

critical values in Section 4, but a common crucial step in these theorems is in fact establishing the

representation along the lines of (a.18).

A5.2. Supplementary notes for Section 4.1

Validity of critical value. Let B be the matrix of which column vectors correspond to (single-

valued) group types obeying RM axiom. Then, m � |Y � pX| and n � |B| (recall that the set of

group types obeying RM axiom is denoted by B). Ignoring the summing up condition for now, the

essential part of the set PSC is A, and similarly, for κ ¡ 0, the essential part of PSC
κ is Aκ (see also

Theorem 3.1 in Kitamura and Stoye (2018)). To show the validity of the critical value, Kitamura

and Stoye (2018) introduced the following assumptions on data generating process. (They are also

referred to in Section 4 of the main paper).

Assumption 1. Let Nx be a number of observations with covariates x, and N � °
xP pXNx. Then,

for each x P pX, Nx

N
Ñ ρx as N Ñ 8, where ρx ¡ 0.

Assumption 2. The empirical distribution is obtained from N repeated cross sections of random

samples for each realization of covariates x.

Kitamura and Stoye (2018) further specify a class of distribution, on which they impose some

conditions to guarantee stable behavior of the test statistic. Our argument here follows the one in
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their paper precisely. By the preceding assumptions, we collect a random sample of action profiles

y for each realization of x. Combining a choice made by a group facing each x in a sample, we can

obtain a single-valued group type b P t0, 1u|Y� pX| as a random vector (it holds by definition that

Erbs is equal to the empirical choice frequency). Using the H-representation, for each realization of

b, it is obvious that b P B ðñ Db ¤ 0. Rows of D correspond to the restrictions from RM axiom;

some of them are satisfied by definition for any b representing a single-valued group type (such as

the sum-up condition for each x), while others are nontrivial restrictions. Let KR be the set of

indices of rows corresponding to the latter restrictions in Db ¤ 0, and g �t pg1, g2, ..., g|KR|q � Db.

Kitamura and Stoye (2018) introduced the following condition (see their paper for the detailed

argument).

Condition 1. For each k P KR, varpgkq ¡ 0 and E
�
|gk{

a
varpgkq2�c1 |

�
  c2 hold, where c1 and c2

are positive constants.

With these preparations, Theorem 4.2 in Kitamura and Stoye (2018) can be presented as follows:

Theorem A.2. Choose κN ¡ 0 such that κN Ó 0 and
?
NκN Ò 8 as N Ñ 8. Then, under

Assumptions 1 and 2, it holds that

lim inf
NÑ8

inf
pPPXA

PrpJN ¤ ĉ1�αq � 1� α, (a.19)

where P is the set of all population distributions p (i.e. p P r0, 1s|Y� pX| such that
°

yPY py,x � 1 for

each x P pX) obeying Condition 1, and ĉ1�α is the 1� α quantile of JN with 0 ¤ α ¤ 1
2
.

Lemma A.1 plays a key role in proving this theorem. However, since we adopt the computa-

tion procedure based on column generation, we need to appeal to the version of Theorem A.2 by

Smeulders et al. (2021), which obtains essentially the same asymptotic property, but only requires

strictly positive weights on some specific subset of column vectors of B. The key for their result is

the following amended version of Lemma A.1 (Lemma 1 in Smeulders et al. (2021)).

Lemma A.2. Let A be defined as (a.15) and (a.16), and suppose that B1 � B satisfies the following

property: for every d P D¤, there exists some b P B1 such that d � b   0. Then, for each κ ¡ 0, the
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set

A1
κ �

"
Bτ : τb ¥ κ

|B1| for all b P B1 and τb ¥ 0 for all b P BzB1
*

(a.20)

can be represented as

A1
κ �

 
p P Rm : D¤p ¤ �κu1 and D�p � 0

(
, (a.21)

with u1 being a strictly positive vector.

It is pointed out by Smeulders et al. (2021) that this lemma allows us to obtain a similar result

to Theorem A.2, with the original proof by Kitamura and Stoye (2018) being valid as it stands

(except for using Lemma A.2 instead of Lemma A.1). Then, in turn, as long as Assumptions 1 and

2 are maintained, κN ¡ 0 is chosen such that κN Ó 0 and
?
NκN Ò 8 as N Ñ 8, and B1 obeys the

requirement in Lemma A.2, the fraction p � #tJ prqN ¡ JNu{R obtained by our procedure in Section

4.1 works as the valid critical value.

Construction of the set B1. In the main paper, we require that B1 contains a basis of the space

spanned by B, since it works as a sufficient condition for the requirement in Lemma A.2.

Lemma A.3. Suppose that B1 contains a basis of the space spanned by B, and let D¤ be the same

as Lemma A.2. Then, for each d P D¤, there exists some b P B1 such that d � b   0.

Proof. By way of contradiction, suppose that there exists some d P D¤ such that d � b � 0 for all

b P B1. Since B1 contains all linear basis of B, this implies that d � p � 0 for all p P A1
κ. However,

this means that d P D�, and since D¤ XD� � H, this is a contradiction. QED

A possible procedure for obtaining B1 is as follows. First, recall that by Proposition 2 in the

main paper, a group type is in B if and only if it solves the integer programming problem Cb ¤ θ.

Let B2 be some linearly independent set of group types in B (for example, taking any singleton

set as B2, it is linearly independent). We could check the existence of group types in B which are

linearly independent of the ones in B2 by checking if there is b P B (equivalently, that solve Cb ¤ θ)

and a real-valued vector w such that B2 � pb � B2wq � 0 and b � B2w, where B2 refers to the

matrix made out of the vectors in B2. If such a group type b can be found, then we add it to B2
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and repeat the procedure. This process will stop when there are no vectors in B which are linearly

independent of the ones in B2, at which point we obtain a basis for B (and hence, we adopt the

resulting B2 as B1). Notice that while it could be practically hard to completely list the elements of

B, listing B1 is less demanding, since the dimension of this space grows a lot more slowly than the

number of actions and covariate values.3

A5.3. Supplementary notes for Section 4.2

The main issue here is the validity of the critical value for each β P p0, 1q used in Section 4.2. We

can largely appeal to Theorem 4 in Deb et al. (2022) but, as in the preceding subsection, a small

twist is needed because of the use of column generation.

Recall that for a given β P p0, 1q and B� � B, the null hypothesis is that the data set q is a

sample from some element of the set

PSCpβ;B�q �
#

Bτ : τ P ∆B and
¸

bPB�

τb ¥ β

+
, (a.22)

and we need to construct a suitable tightening for the domain of τ , which is denoted by ∆B
κN
pβ;B�q

in the main paper. Maintaining Assumptions 1 and 2, Theorem 4 in Deb et al. (2022) still holds

by obtaining JN from the tightening ∆B
κN
pβ;B�q such that

∆B
κN
pβ;B�q �

"
τ P ∆B : τb ¥ p1� βqκN

|B1 X B�| for b P B1 X B� and τb ¥ βκN
|B1zB�| for b P B1zB�

*
,

(a.23)

where κN and B1 � B respectively obey the properties referred to in the preceding subsection.

Theorem A.3. Choose κN in the same way as Theorem A.2. Then, under Assumptions 1 and 2,

it holds that

lim inf
NÑ8

inf
pβ,pqPF

PrpJNpβq ¤ ĉ1�αq � 1� α, (a.24)

3 It is straightforward to check that the dimension of the space spanned by the set of all logically possible group
types is precisely |Y � pX| � |Y| � 1 and so obviously the dimension of the space spanned by B can be no higher.
In fact, the span of B coincides with that of the set of all logically possible group types, even though B is a proper
subset.
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where F �  pβ,pq : β P p0, 1q,p P PX PSC
(

and ĉ1�α is the 1�α quantile of JNpβq with 0 ¤ α ¤ 1
2

(P is defined as Theorem A.2).

Given this theorem, other than using ∆B
κN
pβ;B�q instead of ∆B

κN
, the critical value for each

β P p0, 1q is obtained by exactly the same bootstrap procedure as the one outlined in Section 4.1.

The only departure from the tightening in Deb et al. (2022) is that we require strictly positive

weights for elements in B1 � B, rather than all of B. This difference is material in the part of the

proof of Deb et al. (2022) that depends on Lemma A.1, since we do not have the entire set B due to

the fact that we use of column generation. Nevertheless, proceeding as in the previous subsection,

by choosing B1 obeying the requirement in Lemma A.2, we can appeal to that lemma instead of

Lemma A.1 (see also Lemma A.3). Apart from this variation, the proof proceeds in the same way

as the analogous one in Deb et al. (2022).

Remark 1. As seen from (a.23), we need to choose B1 so that both B1 X B� � H and B1zB� � H.

If B1 (constructed as in the preceding subsection) does not satisfy these conditions, we need to

(manually) add any group type contained in these intersections. Nevertheless, this aspect would

not matter in practice, especially if the statistical test has been done in advance. In that case, one

can expect to have a reasonably ‘rich’ subset of B as a result of the column generation procedure

constructed for the test, which can be used as a starter set B1 for the estimation of β.

Remark 2. Note that Deb et al. (2022) define PSCpβ;B�q by using the equality constraint°
bPB� τb � β, rather than

°
bPB τ

b ¥ β. We adopt the inequality condition since it facilitates

the implementation of the column generation procedure. In particular, our procedure depends on

Proposition 3 in the main paper, which in turn depends on a set of inequalities. (At this point,

we do not have the counterpart of this proposition for the equality constraint.) Using inequalities

should not cause any substantial change in the proof of Theorem A.3 beside the fact that some

equalities in the proof need to be converted to inequalities in a rather obvious way (see Online

Appendix of Deb et al. (2022)).
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A6. Additional empirical analysis

A6.1. Finer discretization of covariates

In the main paper, we initially discretize each covariate into two values, following Kline and Tamer

(2016). Specifically, the market presence variables (MPLCC and MPOA) and the market size variable

MS take value 1 if their actual values are above median amongst observed data. In order to show

that our test can actually deal with a larger model, we also implemented our test with all these

covariates being discretized into four values using quartile points. As we pointed out in the main

paper, the data set passes the SC-rationalizabiiity test with the binary discretization, but it fails

with a quartile discretization.

To see the effect of finer discretization one by one, we consider the cases in which (i) MPLCC

and MPOA are split into four values, while MS is kept binary, and (ii) MS is split into four values,

while MPLCC and MPOA are kept binary. We obtain that the former is rejected with p-value 0,

while the latter is supported with p-value 0.412. We also implement our test with other types of

discretizations. The results are summarized in Table A.3.4 These results imply that our behavioral

hypothesis is vulnerable to finer discretizations of the market presence variables, while it is (to some

extent) robust to finer discretizations of the market size variable.

When covariates are more finely discretized, the number of observations in each bin becomes

small, which makes the estimation noisier. Given this, we use choice distributions for x’s with

more than or equal to 50 observations.5 In other words, for each pattern of discretization, we letpX � tx P X : Nx ¥ 50u , where Nx is the number of observations with covariates x. The size of pX
in each case is also reported in Table A.3. The results here also imply that our test still have good

testing power even with relatively small size of pX. For example, for the case of 6 � 6 � 6, we only

use observations for 46 types of realization of covariates out of 216 possible realization of covariates,

but the hypothesis of SC-rationalizablity is refuted with p-value being equal to 0.

Lastly, to compare the results of our test with that of Kline and Tamer (2016), we also implement

4As seen from the table, not all results are listed and the results for other combinations are available from the
authors. Also, one may implement them using our R program.

5The conclusions of the tests (pass/fail with 5% significance level) in Table A.3 remains the same even if we letpX � tx P X : Nx ¥ 100u, except for the cases with 6� 6� 4 and 6� 6� 6. In those cases, the test fails to reject the

data, possibly because pX becomes too small relative to the original size of X, which weaken the testing power. For
example, in 6� 6� 4, |pX| � 12, when |X| � 144.
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MPLCC �MPOA �MS |pX| p-value

2� 2� 2 8 0.138
2� 2� 3 12 0.195
2� 2� 4 16 0.412
2� 2� 6 24 0.195
2� 2� 8 32 0.020
3� 3� 2 18 0.000

MPLCC �MPOA �MS |pX| p-value

3� 3� 3 27 0.017
4� 4� 2 32 0.000
4� 4� 4 60 0.000
6� 6� 2 65 0.000
6� 6� 4 70 0.000
6� 6� 6 46 0.000

Table A.3: Tests under various discretization

their parametric estimation for some patterns of discretization in Table A.3 (see Section A1 for more

details on Kline and Tamer’s estimation). The results are broadly consistent. We find that with

tolerance level 0.075, the probability of obtaining nonempty set of estimated coefficients is (i) 1 for

2 � 2 � 2, (ii) 0.928 for 2 � 2 � 3, and (iii) 0 for 3 � 3 � 3. In particular, note that the model is

rejected in case (iii).

A6.2. Lower probability bounds for equilibrium actions

In Section 5 of the main paper, as an application of counterfactual analysis discussed in Section 3.4,

we estimated the maximum probability of a given action profile y being an equilibrium action at

the covariate x P pX. We motivated this exercise by considering a policy maker who could influence

the equilibrium selection mechanism but not player payoffs and asked the extent to which she could

shift the action profile towards the outcome y. In formal terms, we considered the weight on the

set

B� � tB P B : there is Π P SC that rationalizes B such that y P NEpΠ,xqu

(see Section 3.4, Application 2). B� is obviously a superset of (and possibly a strict superset of)

B0 � tB P B : Bpxq � yu

(the set of types that actually play y at x). What we refer to as max Prry P NEpΠ,xqs in Section

5 (see also Table A.4 below) is the upper limit of the confidence interval on

¸
BPB�

τB
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subject to pτBqBPB solving the model (which we can estimate by the procedure set out in Section

4.2). This represents the most optimistic estimate of what the policy maker can do, not only because

it assumes the greatest possible weight on B� but also because it assumes (given the definition of

B�) that every group type which can have payoff functions for which y is an equilibrium, actually

does have such payoff functions.

It is also interesting to investigate the most conservative assessment of what the policy maker

can do, assuming that equilibrium selection rules are freely manipulable. This is given by the weight

on the set

B: � tB P B : y P NEpx,Πq for any Π P SC that rationalizes Bu . (a.25)

This is the set of types for which y must be an equilibrium at the covariate x. Obviously,

B0 � B: � B�.

Below, we explain how we may characterize B: in the case of the application in Section 5. This

allows us to calculate the lower limit of the confidence interval on

¸
BPB:

τB,

subject to pτBqBPB solving the model, which we denote by min Prry P NEpΠ,xqs (see also Table

A.4 below); it is the most conservative estimate of far the policy maker can shift the equilibrium

towards y without manipulating payoffs.

Claim A.1. Let x P pX. When y � pN,Eq, the group type B is in B: if and only if B P B and either

(i) Bpxq � pN,Eq or

(ii) Bpxq � pE,Nq and there exists some x1 � px11, x12q and x2 � px21, x22q with x11 ¥ x1 and x22 ¤ x2

for which Bpx1q � pN,Eq and Bpx2q � pN,Eq.6

Similarly, when y � pE,Nq, the group type B is in B: if and only if B P B and either

6In fact, the crucial part of condition (ii) is that player 1 chooses N when x11 ¥ x̄1 while player 2 chooses E
when x22 ¤ x̄2. However, Bpx1q � pN,Nq and Bpx2q � pE,Eq are excluded by the RM axiom, and hence it suffices
to consider the situation described in the statement.
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(i’) Bpxq � pE,Nq or

(ii’) Bpxq � pN,Eq and there exists some x1 � px11, x12q and x2 � px21, x22q with x11 ¤ x1 and x22 ¥ x2

for which Bpx1q � pE,Nq and Bpx2q � pE,Nq.

Proof. We only prove the case of y � pN,Eq, since the other case can be shown in a similar vein. It

is clear that if B obeys (i), then any Π P SC rationalizing it must support pN,Eq as an equilibrium

action at x. Suppose that B obeys (ii). Then, Bpx1q � pN,Eq implies that N P BR1pE, x11q, and

the monotonicity of best response implies that N P BR1pE, x1q holds. Also, Bpx1q � pN,Eq and

the monotonicity implies that E P BR2pN, x2q, and hence, for any Π P SC rationalizing B, pN,Eq
must be supported as an equilibrium action at x � px1, x2q.

Conversely, if neither (i) nor (ii) holds, B P B can be rationalized by some Π P SC for which

pN,Eq is not an equilibrium action at x. It is trivial that Bpxq � pN,Nq or pE,Eq, then pN,Eq
cannot be supported as an equilibrium action, since pN,Nq and pE,Eq cannot be a part of multiple

equilibria in our setting. When Bpxq � pE,Nq and player 1 never plays N for any x11 ¥ x1, one

can find his (single-crossing) payoff function so that Π1pE, y2, x1q ¡ Π1pN, y2, x1q for y2 P tE,Nu;
indeed, our construction of the payoff function in the proof of Theorem 1 would satisfy this property.

Similarly, when Bpxq � pE,Nq and player 2 never plays E for any x12 ¤ x2, one can find his (single-

crossing) payoff function so that Π2pN, y1, x2q ¡ Π1pE, y1, x2q for y1 P tN,Eu. By doing so, a profile

of payoff function Π � pΠ1,Π2q does not support pN,Eq as an equilibrium action at x. QED

For each x P pX and y P tpN,Eq, pE,Nqu, we would like to estimate the minimum possible

fraction of group types in B:. In order to apply the procedure in Section 4.2 of the main paper, we

estimate the maximum possible fraction on B:: :� BzB:, where B:: corresponds to the set of types

for which y may not be an equilibrium action at x, and subtract it from 1. Similar to the case of

maximum probability bounds (dealt with in Section A4), we employ the matrix characterization of

group types in B::. Specifically, we shall construct C:: and θ:: such that a group type b P B:: if

and only if C::b ¤ θ::.

Construction of C:: and θ::. For each y P tpN,Eq, pE,Nqu and x P pX, define the matrix C:: as

follows. Let us first note that the size of this matrix is equal to
�
p|Y � pX| � 1q �Kpy,xq

	
�|Y� pX|,
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pMPLCC ,MPOA,MSq p0, 0, 0q p0, 1, 0q p1, 0, 0q p1, 1, 0q

Action profile pN,Eq pE,Nq pN,Eq pE,Nq pN,Eq pE,Nq pN,Eq pE,Nq

max Prry P NEpΠ,xqs 0.699 0.544 0.815 0.503 0.503 0.644 0.558 0.555

min Prry P NEpΠ,xqs 0.658 0.115 0.784 0.154 0.385 0.234 0.512 0.121

Observed Prob. 0.682 0.006 0.785 0.003 0.367 0.253 0.542 0.050

pMPLCC ,MPOA,MSq p0, 0, 1q p0, 1, 1q p1, 0, 1q p1, 1, 1q

Action profile pN,Eq pE,Nq pN,Eq pE,Nq pN,Eq pE,Nq pN,Eq pE,Nq

max Prry P NEpΠ,xqs 0.841 0.616 0.913 0.496 0.485 0.661 0.523 0.497

min Prry P NEpΠ,xqs 0.806 0.220 0.881 0.237 0.385 0.278 0.484 0.106

Observed Prob. 0.832 0.001 0.910 0.000 0.326 0.306 0.501 0.021

Table A.4: Probability bounds for equilibrium action profiles

where

Kpy,xq � #tx1 P pX : x11 ¥ xiu �#tx2 P pX : x22 ¤ x2u, if y � pN,Eq, (a.26)

� #tx1 P pX : x11 ¤ x1u �#tx2 P pX : x22 ¥ x2u, if y � pE,Nq. (a.27)

We set the first |Y� pX| � |Y� pX|-submatrix as the matrix C (for characterizing RM group types)

constructed in the proof of Proposition 2. The p|Y � pX| � 1q-th row is for checking condition (i)

in Claim A.1, and the remaining Kpy,xq rows are for checking condition (ii) in Claim A.1. When

y � pN,Eq, this part of the matrix is constructed as follows (the case of y � pE,Nq is similar):

1. In the p|Y � pX| � 1q-th row, the coordinate corresponding to ppN,Eq,xqq takes value 1, and

others are set to 0.

2. Each of remaining Kpy,xq rows should be related to each combination px1,x2q for which

x11 ¥ x1 and x22 ¤ x2. Regarding each row as such, the coordinate corresponding to ppE,Nq,xq
is set to 1, the coordinates corresponding to ppN,Eq,x1q and ppN,Eq,x2q are set to 0.1, and

others are 0.

Finally, the vector for the RHS, θ::, is defined as the
�
p|Y � pX| � 1q �Kpy,xq

	
dimensional column

vector, of which the first |Y� pX|-dimensional subvector is equal to the vector θ constructed in the

proof of Proposition 2, the p|Y � pX| � 1q-th element is 0, and all other elements are set to 1.1.

Estimates of min Prry P NEpΠ,xqs. Given the matrix representation we can estimate the greatest

possible weight on B:: using the procedure in Section 4.2 (and Appendix A5.3), and thus the lowest
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possible probability for y to be an equilibrium action at x; formally, we obtain the lower limit of

the confidence interval on
°

BPB: τB. This is denoted by min Prry P NEpΠ,xqs in Table A.4. Notice

that there is not much difference between min PrrpN,Eq P NEpΠ,xqs and the empirical frequency

of pN,Eq.7 On the other hand, min PrrpE,Nq P NEpΠ,xqs is appreciably larger than the empirical

frequency of pE,Nq at some covariate values, for example, x � p0, 0, 1q.
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