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Abstract

This paper studies covert (or hidden) information acquisition in common value Bayesian games of strate-
gic complementarities. Using the supermodular stochastic order to arrange the structures of information 
increasingly in terms of preferences, we provide novel, easily interpretable and verifiable, though restric-
tive conditions under which the value of information is increasing and convex, and study the implications in 
terms of the equilibrium configuration. Increasing marginal returns to information leads to extreme behavior 
in that agents opt either for the highest or the lowest quality signal, so that the final analysis of this complex 
game simplifies greatly into that of a two-action game. This result can rationalize the complete information 
game as an endogenous outcome. Finally, we also establish that higher-quality information leads players to 
select more dispersed actions in the Bayesian game.
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1. Introduction

The emergence of information economics, grounded on solid theoretical foundations, owes 
much to the theory of Bayesian games (Harsanyi, 1967, and Mertens and Zamir, 1985). The 
basic formulation of this class of games, adopted by most economic applications, posits an ex-
ogenously given structure of information. An unknown payoff-relevant parameter is part of the 
structure of the game and players receive some exogenous partial information (or message) that 
guides their decisions in the game. This message is usually costless and its reliability (quality) 
is fully out of the control of the players. Yet, in many of the natural economic settings, it would 
be more appropriate to postulate that players have the option of acquiring information on the 
unknown parameter, beyond what is readily available, provided they pay a corresponding cost.

We endogenize information acquisition in the class of common value Bayesian supermodular 
games of Van Zandt and Vives (2007), or VZ-V. These are games in which actions are strate-
gic complements; for each player, own actions and the unknown are complements; and interim 
beliefs increase in messages. A typical example would be price-setting firms that compete in an 
industry with demand known up to a parameter whose prior distribution is common knowledge. 
We add an initial stage where players can purchase covert information as a noisy signal.

We show that, for the class of common value Bayesian supermodular games, the informative-
ness of the signal relies on its association with the state of the world, a feature nicely captured by 
the supermodular stochastic order. This result extends Athey and Levin (2001), who establish a 
positive value for information in monotone decision problems, to settings with strategic interac-
tions (see Neyman, 1991, for a related analysis). To do so, we adapt some results from VZ-V to 
take care of the effects generated by extra information on rivals’ behavior for one player. We also 
investigate how information affects agents’ strategies in the action phase of the game. We find 
that more informative signals lead players to take more extreme actions. The intuition is easy to 
grasp: With signals of higher quality, players place more faith in the messages they receive and 
are, thus, encouraged to make more extreme decisions in the Bayesian game.1

The central part of the paper deals with the second order properties of the value of covert 
information as a fruitful approach to identify a subclass of models that can possess only extreme 
pure strategy Bayesian information equilibria. We propose a novel assumption of convexity of 
the information structure in the supermodular order. The interpretation of this notion of convexity 
is quite natural for the setting at hand: Higher quality raises the informativeness of the signal with 
increasing returns in signal quality. For this subclass, we show that for each player, all interior 
choices of signal quality are strictly dominated, so that only the extremal signal qualities can 
emerge at equilibrium. In this way, we reduce the complex existence issue for the full game 
to one involving a simple two-action (matrix) game. Although the level of generality does not 
allow us to settle in a systematic way the existence issue for this matrix game, this part should be 
easy to accomplish for a particular application, where the extremal information games are well 
structured and thus easier to compare in terms of payoffs.

The second order implications of information acquisition have been extensively investigated 
in the single-player case. A key general conclusion is that the value of information tends to 
be convex, mainly near zero: Radner and Stiglitz (1984) and Chade and Schlee (2002); see also 
Dimitrova and Schlee (2003). Our analysis represents an extension to a multi-agent setting, using 
the supermodular order to derive conditions for global convexity of expected payoffs. Intuitively, 

1 Roux and Sobel (2015) have independently derived a similar result to explain polarization of group decisions.
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the fact that a player’s signal quality increases in the supermodular order at an increasing rate 
combines well with the complementarity structure of a Bayesian supermodular game to yield the 
strong conclusion that each player will always go for extreme information.2 In other words, the 
fit between the two structures is such that the game at hand inherits the properties of a decision 
problem with the same convexity assumption (for which our main result clearly holds), even 
though all the underlying complex strategic interactions are fully taken into account.

The complexity of this class of games with general payoffs is such that many previous au-
thors ended up solving convenient specifications with closed form solutions.3 Given the strength 
of our conclusion, it will come as no surprise that the stochastic convexity assumption is indeed 
restrictive (more on this point later). The tacit claim here is not that we have identified the uni-
versal structure for a general analysis of these games, but rather one tractable structure, which 
nicely complements the existing natural setting for Bayesian games of VZ-V. One would then 
hope that the present paper might constitute one more step in an ongoing process, which may 
require progress on several fronts, including existence in other classes of Bayesian games.

This framework might be appropriate as a theory of costly rationality in strategic settings. 
Some well-known violations of the hyper-rationality paradigm, such as those commonly ob-
served in laboratory experiments, might be better explained by a recognition that, in many envi-
ronments, good decisions require the acquisition of costly information, rather than the common 
postulate that economic agents are inherently irrational or boundedly rational (Radner, 2000).

2. The analytical framework

We consider a general model of hidden (or covert) information acquisition for a broad class 
of common value Bayesian games of strategic complementarities studied by VZ-V. This class of 
games has existing applications in various models of oligopolistic competition, arms races, bank 
runs, and R&D. Adding endogenous information would be of interest for these applications.

2.1. Payoffs and information structures: maintained assumptions

The set of players is N = {1, . . . , n}. Agent i chooses an action ai from a compact metric 
lattice Ai .4 His payoff is given by ui (ai,a−i ,ω) : Ai × A−i × � → R where a−i ∈ A−i ≡
�j �=i,j∈NAj denotes the vector of other agents’ actions, and ω ∈ � ⊆ R is a realization of an 
exogenous payoff relevant random variable (the state of the world). Agents choose their actions 
before the state of the world, ̃ω, is realized. The prior distribution of ̃ω, H (·), is common knowl-
edge. We assume the basic Assumptions 1–3 below hold throughout the paper.

Assumption 1. For all i, ui (a,ω) is uniformly bounded, measurable in ω, and continuous in a.

2 With the (a priori plausible) dual assumption that the signal quality increases at a decreasing rate, the sufficient 
conditions to obtain concave expected payoffs in own information seem to be more restrictive (see on-line appendix). 
This suggests an alternative to the VZ-V class of games might be needed for such an approach.

3 In the on-line appendix, we also provide one natural example as a simple illustration of the present approach.
4 Although players’ actions may be multi-dimensional, we do not use bold letters for ai ∈ Ai , but only for joint action 

profiles a ∈ A ≡ �i∈NAi , and for the action profiles of all players other than i, a−i ∈ A−i . As for notation, we use ≥
for partial orders in general. We use “greater than” and “increasing” in a weak sense. We distinguish random variables 
from their realizations by using wiggles, e.g., ω denotes a realization of the random variable ̃ω.
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Complementarities arise through two different channels. First, the incremental returns of agent 
i in own action increase in others’ actions. Second, the marginal profitability of an increase in 
a player’s action increases in the state of the world. To fix ideas, the reader might keep in mind 
a Bertrand oligopoly with differentiated substitute products and demand uncertainty. The next 
assumption defines our setup as a supermodular game parameterized by ω.5

Assumption 2. ui is supermodular in ai and has strictly increasing differences in (ai;a−i ,ω).

Player i acquires information about the state of the world by purchasing a noisy signal. 
Let Si ⊆ R be the set of all possible signal realizations. As in Ganuza and Penalva (2010), 
player i chooses from a family of joint distributions {F (si,ω;αi)} indexed by his expenditure 
αi ∈ [

α,α
]
, where α is his budget and α ≥ 0.6 Each αi generates a statistical experiment, and 

increasing αi raises the informativeness (or the quality) of the signal in a way to be formalized 
below.

We assume that signals are independent conditional on ω. Let s ∈ S ≡ �i∈NSi and α ∈ [
α,α

]n
denote the realization of a vector of signals and a quality profile, respectively. Each α induces a 
joint cumulative distribution function (cdf) F (s,ω;α) : S × � → [0,1].

Assumption 3. The conditional cdf’s of F (s,ω;α) satisfy (i) F (s |ω;α ) is first order stochasti-
cally increasing in ω and (ii) F (s−i ,ω |si;α ) is first order stochastically increasing in si .

Thinking of Nature as an additional player of type ω ∈ �, these conditions mean that players’ 
interim beliefs increase in messages in the sense of first order stochastic dominance.

2.2. The game and the equilibrium concept

The timing of the game is as follows. First, player i chooses αi ∈ [
α,α

]
independently of the 

others. Then, upon observing the realization of his own signal si (but neither others’ information 
qualities α’s nor others’ signals), he chooses an action ai ∈ Ai in the game that follows. We thus 
focus on covert (as opposed to overt) information acquisition.7 We denote this game by �.

A pure strategy for player i in � consists of a pair (αi, σi), where αi ∈ [
α,α

]
and σi : Si → Ai

is a Borel measurable function from messages into actions. Let �i denote the set of all possi-
ble σi . Given a strategy profile (α,σ ), with α ∈ [

α,α
]n and σ ∈ � ≡ �i∈N�i , let (α−i ,σ−i )

denote the profile where players other than i follow their corresponding strategies at (α,σ ).
The formal definition of the equilibrium notion under consideration is now given.

5 See, e.g., Milgrom and Roberts (1990), Topkis (1998), and Vives (1990).
6 Consistency requires E

[
F (si ,ω;αi) |ω;αi

] = H (ω) for all αi ∈ [
α,α

]
.

7 This timing is the same as the one adopted by Persico (2000) for first and second price auctions, and by Hauk and 
Hurkens (2001) and Vives (1988, 2008) for Cournot games. This timing assumption is suitable in information acquisition 
settings characterized by non-verifiability of signal qualities, absence of communication channels and informational 
spillovers between players, and short time periods between the two phases of the game. Naturally, one can also identify 
other economic settings for which a two-period timing (overt information acquisition) would be more appropriate. The 
present approach to equilibrium existence does not appear to extend to this more complex setting. Other than studies with 
specific functional forms (quadratic payoffs and Gaussian noise), we know of no general treatment of this case. Thus this 
is an important open question for future work on this topic.
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Definition 1. A pure strategy profile (α∗, σ ∗) ∈ [
α,α

]n ×� is a Bayesian Nash equilibrium with 
endogenous information of � if, for each i ∈ N ,

(α∗
i , σ ∗

i ) ∈ arg maxαi∈
[
α,α

]
,σi∈�i

{∫
S,�

ui

(
σi (si) ,σ ∗−i (s−i ) ,ω

)
dF

(
s,ω;αi,α

∗−i

) − αi

}
.

Although � is a one-shot game, we distinguish between stage I (information acquisition) and 
stage II (action choice). Following Hauk and Hurkens (2001), we first consider the action stage 
game assuming an exogenous profile of information α (denote this game by �II (α)). We then 
study incentives for unilateral deviations from α. An equilibrium of � happens when no such 
incentives are present at an equilibrium profile of the exogenous information game �II (α).

3. The information acquisition game

3.1. Monotone equilibria for �II (α) and incentives to deviate from α

Let α ∈ [
α,α

]n denote any exogenous information profile. We start with the analysis of the 
fictitious exogenous information game �II (α), described above. The set of strategies �i is a 
lattice when ordered with the pointwise (partial) order, i.e., σi ≥ σ ′

i if σi (si) ≥ σ ′
i (si) for every 

si ∈ Si . The first existence result is the main conclusion of VZ-V (and Van Zandt, 2010).

Lemma 2. For any given α ∈ [
α,α

]n
, �II (α) has a greatest and a least Bayesian Nash equilib-

rium, both of which are monotone increasing and Borel measurable in own message.

Henceforth, for a given α, we select the maximal equilibrium σ for the game �II (α). The 
monotonicity of σ is a critical feature of our approach to order the information structures. Our 
analysis remains valid for any other monotone selection, e.g., the minimal equilibrium of �II (α).

The next step in the analysis is to investigate conditions under which no player i has incentives 
to deviate from a given α. We initially focus on the returns to information acquisition. Two 
key aspects deserve attention. First, since we model hidden information acquisition, player i’s 
deviation from αi to α′

i will not be observable to others, so that there will be no strategic effect 
on the other players. Second, since player i knows the quality of his own signal, if he deviates at 
stage I to a given α′

i , he will need to adjust his strategy σ i (·) accordingly at stage II to continue 
to best respond to the fixed strategy σ−i (·). Formally, if player i unilaterally deviates from αi to 
α′

i in stage I, he would switch from the strategy σi (·) to a selection of

ϕi

(
si;α′

i

) = arg maxai∈Ai

∫
S−i ,�

ui (ai,σ−i (s−i ) ,ω)dF
(
s−i ,ω

∣∣si;α′
i ,α−i

)
. (1)

The next lemma uses intermediate results in VZ-V and Van Zandt (2010).

Lemma 3. The maximal and the minimal selections of ϕi

(
si;α′

i

)
, ϕi

(
si;α′

i

)
and ϕ

i

(
si;α′

i

)
, exist, 

are increasing, and Borel measurable in si .

Using Lemma 3, the maximum expected payoff that player i can get (net of information costs) 
if he unilaterally deviates from αi to α′

i in stage I is given by

Ui

(
α′

i ,α
) =

∫
Si×�

∫
S−i

ui

(
ϕi

(
si;α′

i

)
,σ−i (s−i ) ,ω

)
dF (s−i |ω;α−i ) dF

(
si ,ω;α′

i

)
. (2)
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3.2. Comparing information structures

Building on our previous results, this section characterizes the properties of Ui

(
α′

i ,α
)

as a 
function of α′

i . It also sheds light on the effect of α′
i on players’ behavior at stage II.

3.2.1. First-order effects of the quality of information
To ascertain the impact of changing α′

i on Ui

(
α′

i ,α
)

we impose more structure on the fam-
ily {F (si,ω;αi)}αi∈

[
α,α

]. We assume F (si,ω;αi) increases in αi in the supermodular (spm) 
stochastic order. Though close in spirit to Blackwell’s (1953) order, the spm order is more ap-
propriate here in view of the complementarity structure on payoffs.8 As this order is central 
to our analysis, we state a formal definition and a convenient characterization (Tchen, 1980;
Epstein and Tanny, 1980; Meyer and Strulovici, 2012).

Definition 4. Let F (si,ω;αi) and F
(
si ,ω;α′

i

)
be cdf’s with the same marginals and αi > α′

i . 
We say that F (si,ω;αi) is larger than F

(
si ,ω;α′

i

)
in the spm order if

F (si,ω;αi) ≥ F
(
si ,ω;α′

i

) ∀ (si ,ω) ∈ Si × �. (3)

That is, if F (si,ω;αi) is increasing in αi on 
[
α,α

]
.

The spm order applies only to families {F (si,ω;αi)}αi∈
[
α,α

] that share the same marginals, as 

we assume.9 Müller and Stoyan (2002) is a thorough survey. A useful characterization follows.

Lemma 5. Inequality (3) holds if and only if∫
Si×�

h(si,ω)dF (si,ω;αi) ≥
∫

Si×�

h(si,ω)dF
(
si ,ω;α′

i

)
(4)

for all supermodular functions h (si ,ω) for which these two expectations exist.

The next example offers a general way of constructing such a class of cdf’s via mixing.

Example 6. Let M (si,ω) and N (si,ω) be two cdf’s with the same marginals, and M (si,ω) ≥
N (si,ω), i.e. M is larger than N in the spm order. Assume k : [

α,α
] → [0,1] is a smooth 

function, with k′ (·) ≥ 0. Then F (si,ω;αi) = k (αi)M (si,ω) + [1 − k (αi)]N (si,ω) is a cdf 
with the same marginals as M and N , and F (si,ω;αi) increases in αi in the spm order since

∂F (si,ω;αi)

∂αi

= k′ (αi) [M (si,ω) − N (si,ω)] ≥ 0.

The next result uses this order to convey a precise meaning to the quality of information.

8 Due to its ordinal nature, Lehmann’s (1988) order is not suitable, since our payoffs involve summations. In fact, the 
latter point is another key reason the VZ-V setting is appropriate here.

9 We now argue that this assumption is actually w.l.o.g. Assume ̃si has a continuous cdf. Convert player i’s message 
si to zi = F (si ;αi), which has the same informational content. Since signals enter payoffs in the game � only through 
strategies, this so-called “probability integral transformation” does not affect the game in any way, and makes ̃zi uni-

formly distributed on [0,1]. Hence ̃zi is independent of αi . Let’s define G (zi ,ω;αi) = F
(
F−1 (zi ;αi) ,ω;αi

)
, where 

F−1 (zi ;αi) is the right-continuous inverse of the marginal distribution F (si ;αi). It is easily verified that the new family 
{G(zi ,ω;αi)} [ ] share the same marginals.
αi∈ α,α
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Proposition 7. If F (si,ω;αi) increases in αi in the spm order, Ui

(
α′

i ,α
)

increases in α′
i .

This result has a simple economic interpretation. The strategic complementarities in the pay-
offs and the monotone restrictions of the conditional cdf’s (A2 and A3) together with the fact that 
other players follow increasing strategies, lead player i to prefer high (low) actions when he pre-
dicts high (low) values of ω. When information structures are spm ordered, a higher α′

i increases 
the association between ̃si and ω̃. This allows player i a better match between his actions, the 
state of the world and other players’ choices, thereby increasing his expected payoff.

Athey and Levin (2001) establish a similar result for single-agent monotone decision prob-
lems, where the signal helps the agent to predict the state of the world. In our game, the signal 
plays a dual role: It helps each player to predict the state of the world as well as the equilib-
rium actions of the other players. The proof of Proposition 7 extends Athey and Levin (2001) by 
showing that, under A2–A3, the association between player i’s signal and the state of the world 
is preserved after integrating over his rivals’ equilibrium strategies. This step uses some results 
from VZ-V, e.g., the monotonicity of equilibrium strategies in signal realizations.

With the goal of providing a critique of the oft-made claim that more information to a player 
can hurt him in a game, Neyman (1991) argues that a Bayesian game is the appropriate setting 
to show that a player’s welfare always increases with more unilateral information, of which his 
rivals are not aware. Though related to Proposition 7, Neyman’s setting is different in that he 
considers the states-partition version of (finite) Bayesian games, with more information to a 
player being in the inclusion sense, i.e., a finer partition of the states of nature for that player.

We finally show that player i’s strategy becomes more spread-out as he acquires more accurate 
signals. The intuition is simple: With higher-quality signals, he places more faith in his messages, 
and this encourages him to make more extreme decisions in the game that follows.

Proposition 8. Assume the signal space Si is either a compact real interval or a finite set, and 
F (si,ω;αi) increases in αi in the spm order. For each αi > α′

i , let

s∗
i

(
αi,α

′
i

) = infω supt

({
t : F (

ω
∣∣t ′;αi

) − F
(
ω

∣∣t ′;α′
i

) ≥ 0 for all t ′ ≤ t
})

s∗∗
i

(
αi,α

′
i

) = supω inft
({

t : F (
ω

∣∣t ′;αi

) − F
(
ω

∣∣t ′;α′
i

) ≤ 0 for all t ′ ≥ t
})

.

Then, we have that

ϕi (si;αi) ≤ ϕi

(
si;α′

i

) ∀si < s∗
i

(
αi,α

′
i

)
and ϕi (si;αi) ≥ ϕi

(
si;α′

i

) ∀si > s∗∗
i

(
αi,α

′
i

)
.

Levin (2001, pp. 665–666) provides examples of a spm-ordered family of cdf’s that rotate 
around the unconditional mean of the signal as αi varies. This also happens in our Motivating 
Example in the on-line appendix. In such settings, players’ strategies rotate clockwise around the 
unconditional mean of si as the information becomes more precise, i.e., in terms of our Propo-
sition 8, E (si) = s∗

i

(
αi,α

′
i

) = s∗∗
i

(
αi,α

′
i

)
for all αi > α′

i . In such cases, our characterization of 
the effects of more accurate signals on players’ behavior is fully informative.10

10 A more complex case would have min (Si ) < s∗
i

(
αi ,α

′
i

) ≤ s∗∗
i

(
αi ,α

′
i

)
< max (Si ). This happens, e.g., when Si

is finite (as in Roux and Sobel, 2015). However, in general one cannot rule out that s∗
i

= min (Si ) and/or that s∗∗
i

=
max (Si ), which might render this result vacuous. This is due to the fact that F (ω |t;αi ) may be badly behaved (highly 
oscillatory) for t near the end points of Si , due to the fact that conditional cdf’s are only measurable w.r.t. parameters. 
A sufficient condition to rule out s∗

i
= min (Si ) and s∗∗

i
= max (Si ) is to assume that F (ω |t;αi ) is real-analytic in t , 

i.e., that it admits a power series expansion that converges to it (see, e.g., Krantz and Parks, 2002). These points can be 
seen from the proof of Proposition 8.
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3.2.2. Second-order effects of information quality
We now study the second order effects of α′

i on Ui

(
α′

i ,α
)
. While some of our previous results 

have related antecedents in the literature on information and games/decisions, the upcoming ones 
have no analogs in this literature. Besides their independent interest, the properties derived here 
are key to the study of equilibrium for the game �, and form the central part of the paper.11

We introduce a natural and useful notion of convexity in the spm order.

Definition 9. Assume the family {F (si,ω;αi)}αi∈
[
α,α

] shares the same marginals. We say that 

F (si,ω;αi) is convex in αi in the spm order if, ∀αi, α′
i ∈ [

α,α
]
, ∀λ ∈ [0,1],

F
(
si,ω;λαi + (1 − λ)α′

i

) ≤ λF (si,ω;αi)+ (1 − λ)F
(
si ,ω;α′

i

) ∀ (si,ω) ∈ Si ×�. (5)

That is, if F (si,ω;αi) is convex in αi on 
[
α,α

]
.

We now offer a characterization of this concept via expectations of supermodular functions.

Lemma 10. F (si,ω;αi) is convex in αi in the spm order iff, ∀αi, α′
i ∈ [

α,α
]
, ∀λ ∈ [0, 1],∫

Si×�

h(si,ω) dF
(
si ,ω;α′′

i

) ≤ λ

∫
Si×�

h(si,ω) dF (si,ω;αi)

+ (1 − λ)

∫
Si×�

h(si,ω) dF
(
si ,ω;α′

i

)
(6)

(here α′′
i = λαi + (1 − λ)α′

i ) for all supermodular functions h for which the expectations exist.

The spm order ranks informativeness in the sense that a higher αi leads to higher chances of 
observing high (low) realizations of the signal when the state of the world is high (low). This 
new notion of convexity means that increasing αi raises informativeness with increasing returns.

We now provide some insights into the level of generality of the convexity assumption. In ad-
dition to having a natural economic interpretation in terms of increasing returns to information, 
convexity in the spm order enjoys several nice properties, such as preservation by useful oper-
ations such as convex combinations, pointwise maxima, and weak* limits. On the other hand, 
as is often the case with powerful assumptions (as this is shown to be below), this convexity 
property imposes substantial restrictions on the family of distributions. The first is that it restricts 
the informativeness of signals to increase without bound in the investment. Another point is that, 
since convexity in the spm order amounts to F (si,ω;αi) being convex in αi , this distribution 
can possibly have atoms only along constant si or ω lines, so that the location of these atoms 
is always independent of the values of αi .12 This is clearly a potentially significant limitation in 
the present context since a higher quality of information necessarily leaves invariant those values 
of the signal and the fundamental (the atoms) that have a strictly positive probability. In this re-
spect though, it is worth recalling that most studies in information economics assume non-atomic 
distributions (or density functions) at the outset.

11 Related notions of stochastic convexity of integrals w.r.t. parameters of transition probabilities have been used in 
economic dynamics in Amir (1996a, 1996b and 1997) for first and second order stochastic dominance, respectively.
12 In Example 11 below, F (si ,ω;αi) inherits the atoms of the distributions M and N (as these are not assumed atom-
less), but the location of the atoms is invariant in αi , as is easily seen from the definition of F (si ,ω;αi).
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We present a simple method to construct cdf families satisfying convexity in the spm order.

Example 11. Consider the family {F (si,ω;αi)}αi∈
[
α,α

] in Example 6. We show that if 
M (si,ω) ≥ N (si,ω), then F (si,ω;αi) is convex in αi in the spm order if and only if k′′ (·) ≥ 0. 
Indeed,

∂2F (si,ω;αi)

∂α2
i

= k′′ (αi) [M (si,ω) − N (si,ω)] ≥ 0.

This shows that the convex spm order can easily arise for an infinite family via simple mixing.

The usefulness of postulating information structures that are monotone and convex in the spm 
order for the VZ-V class of Bayesian games lies in the next key result for our analysis.

Theorem 12. If F (si,ω;αi) is convex in αi in the spm order, Ui

(
α′

i ,α
)

is convex in α′
i .

The proof of Theorem 12 relies on two key steps. Lemma 10 states that if F (si,ω;αi) is 
convex in αi in the spm order, the expected value of any supermodular function is convex in αi

as well. So the first part of the proof consists in showing that the problem of player i can be 
rewritten in terms of the expectation of a supermodular function in (si ,ω). The second part relies 
on the fact that the pointwise maximum of any collection of convex functions is convex.

This theorem is consistent with well known results for decision problems showing that the 
value of information has a tendency towards a convex shape (Radner and Stiglitz, 1984, among 
other applications), and is convex near zero in general (Chade and Schlee, 2002).

Remark 13. All the notions and results in this section have dual counterparts in terms of con-
cavity, except for Theorem 12, which seems to require stronger assumptions to yield concave 
payoffs according to the approach pursued here. Thus, while concave information structures are 
a priori perfectly plausible in some settings, they appear not to go well with the VZ-V comple-
mentarity structure to yield another tractable subclass of games. An alternative approach might 
be needed for the concave case with general payoffs, a topic of obvious interest for future work, 
as it would generalize the many economic applications known to date (in oligopoly and financial 
settings) where concave quadratic payoffs emerge under Gaussian information (Vives, 2008).

3.3. Bayesian Nash equilibrium with endogenous information

This section uses our previous results to characterize the equilibria of �. Considering the cost 
of information, a pure strategy profile 

(
α∗,σ ∗) is a Bayesian Nash equilibrium of � if

α∗
i ∈ arg max

{
Ui

(
αi,α

∗) − αi : αi ∈ [
α,α

]}
for all i ∈ N, (7)

that is, if no player has incentives to deviate from α∗ at the highest equilibrium of �II (α∗).
Proposition 7 and Theorem 12 state general conditions for Ui

(
α′

i ,α
)

to be increasing and 
convex in α′

i . Hence, the maximand in (7) is also convex in α′
i , and its argmax is always given by 

an extremal element of the constraint set, as if the players were in a binary action game.
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Lemma 14. Assume F (si,ω;αi) is increasing and convex in αi in the spm order for all i ∈ N . 
Then, the game with action set 

[
α,α

]
and payoff functions given by (7) is strategically equivalent 

(generically) to the game with action set {α, α} and payoffs given by (7).13

The power of the stochastic convexity assumption is captured by Lemma 14. The first im-
plication is of a mathematical nature: The analysis of this complex class of games is drastically 
simplified. The resulting convexity of payoffs implies they are continuous in own action αi on 
(α, α) and u.s.c. at α and α, thereby dispensing with the need for dealing with measurability or 
other regularity conditions, and intricate fixed point considerations. The second is of a behavioral 
nature: Equilibrium entails the clear prediction of extreme behavior in information acquisition 
(i.e., for any initial α, every player has an incentive to deviate to α or α).

We are ready to characterize the possible equilibria that can arise in the entire game �.

Proposition 15. Assume the conditions of Lemma 14 hold. Then, we have that

(i) any equilibrium profile α∗ that satisfies (7) is given by α∗ ∈ {
α,α

}n
;

(ii) α is an equilibrium profile if Ui (α,α) − Ui

(
α,α

) ≥ α − α, ∀i ∈ N ; and
(iii) α is an equilibrium profile if Ui

(
α,α

) − Ui

(
α,α

) ≥ α − α, ∀i ∈ N .

If α is the full information signal, one that reveals the state of the world with certainty, then 
Proposition 15 (ii) states sufficient conditions for the complete information game to emerge en-
dogenously. Much applied work using game theory assumes the economic fundamentals are 
known with certainty. Our result identifies environments where this assumption can be fully jus-
tified. Conversely, in settings where the lowest signal is fully uninformative (i.e., the uniform 
distribution), and information is relatively costly, in equilibrium, the Bayesian game would in-
volve level-1 play by all players (Stahl and Wilson, 1995). In the latter case, our approach would 
identify the least rational form of play commonly invoked in experimental economics as a fully 
rational outcome of an appropriately extended game with endogenous information.

Conditions (ii) and (iii) of Proposition 15 are not mutually exclusive: Both α and α are equi-
libria in settings where Ui (α,α) − Ui

(
α,α

) ≥ α − α ≥ Ui

(
α,α

) − Ui

(
α,α

)
, for all i. This 

entails that Ui

(
α′

i ,α
)

be supermodular in 
(
α′

i ,α
)

at the extreme information profiles. In addi-
tion, our result allows for the possibility of extreme asymmetric equilibria, where some players 
opt for the full information signal and others remain uninformed.

Elaborating on the previous remark, since it is well-known that every 2 × 2 game is either 
a supermodular game or a matching-pennies game (Echenique, 2004), the game at hand for the 
case of two players is also of one of these two types.14 It follows that the game defined by (7) has 
a pure-strategy equilibrium if and only if the 2 ×2 game with action space 

{
α,α

}
is supermodular 

with respect to one of the four possible ways of ordering the two binary action sets in the spirit of 
Echenique (2004). In this sense, our approach to ranking information structures leads to existence 
of pure-strategy equilibrium in the two-stage game by exploiting strategic complementarities in 
both stages of the game, with the important caveat that these complementarities are required only 
for the two extreme information levels. Although complementarities do emerge for all levels 
of information acquisition in a variety of models with linear-quadratic payoffs and Gaussian 

13 “Generically” here is meant to rule out the uninteresting case where Ui

(
α′

i
,α

) − α′
i

is a constant.
14 A matching-pennies game is a 2 × 2 game with a unique Nash equilibrium, which is in mixed-strategies.
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information (such as Vives, 1988, and Hellwig and Veldkamp, 2009), the scope for extending this 
powerful property to general formulations appears rather limited. Thus the present relaxation of 
this requirement, that it holds only for the two extreme levels of information acquisition, appears 
promising for economic applications that fit the VZ-V Bayesian structure and our assumption of 
increasing returns in information.

Arrow (1974) and Radner (2000) point out that the production of information often has in-
creasing returns to scale, due to the presence of fixed costs. Adding fixed costs in information 
acquisition would bias results in our favor. The implied increasing returns (declining average 
cost of information) would favor full information, and in cases of high fixed costs may trigger 
the fully uninformative outcome. In addition, if players purchase the desired information from 
specialized suppliers, it is plausible to postulate a concave cost schedule as a reflection of pric-
ing policies based on volume discounts (e.g., a piece-wise linear concave function). This would 
strongly reinforce the qualitative nature of our extreme information results.

4. Proofs

This section collects all the proofs of this paper, and some intermediate results. We begin with 
the usual characterization of (multi-dimensional) first order stochastic dominance.

Lemma 16. Let ̃x and ̃x′ denote two random vectors with support X ⊆ R
n and respective cdf’s 

F (·) and F ′ (·). For any n ≥ 1, ̃x first order stochastically dominates ̃x′, denoted F �1 F ′, if∫
X

h(x) dF (x) ≥
∫

X
h(x) dF ′ (x)

for all bounded increasing measurable functions h :Rn −→ R.

Proof of Lemma 2. For any given α ∈ [
α,α

]n, A1–A3 guarantee that �II (α) is a supermodular 
Bayesian game as defined by VZ-V. Existence of extremal Bayesian Nash equilibria, in strate-
gies increasing in own signal, follows from their main result on p. 344. Borel measurability of 
extremal strategies is shown in Van Zandt (2010). �
Proof of Lemma 3. It follows from Propositions 8 and 11 in VZ-V (and Van Zandt, 2010). �
Proof of Proposition 7. This proof consists of two steps. Step 1 shows that for any σi ∈ �i

that is increasing, 
∫

S−i
ui (σi (si) ,σ−i (s−i ) ,ω)dF (s−i |ω;α−i ) has increasing differences in 

(si ,ω). Step 2 uses this result to show that Ui

(
α′

i ,α
)

increases in α′
i .

Step 1. Assume σi ∈ �i is increasing, si ≥ s′
i and ω ≥ ω′, and consider the next inequalities∫

S−i

ui (σi (si) ,σ−i (s−i ) ,ω)dF (s−i |ω;α−i )

−
∫

S−i

ui

(
σi

(
s′
i

)
,σ−i (s−i ) ,ω

)
dF (s−i |ω;α−i )

=
∫

S−i

[
ui (σi (si) ,σ−i (s−i ) ,ω) − ui

(
σi

(
s′
i

)
,σ−i (s−i ) ,ω

)]
dF (s−i |ω;α−i )

≥
∫ [

ui (σi (si) ,σ−i (s−i ) ,ω) − ui

(
σi

(
s′
i

)
,σ−i (s−i ) ,ω

)]
dF

(
s−i

∣∣ω′;α−i

)

S−i
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≥
∫

S−i

[
ui

(
σi (si) ,σ−i (s−i ) ,ω′) − ui

(
σi

(
s′
i

)
,σ−i (s−i ) ,ω′)]dF

(
s−i

∣∣ω′;α−i

)
=

∫
S−i

ui

(
σi (si) ,σ−i (s−i ) ,ω′)dF

(
s−i

∣∣ω′;α−i

)
−

∫
S−i

ui

(
σi

(
s′
i

)
,σ−i (s−i ) ,ω′)dF

(
s−i

∣∣ω′;α−i

)
.

First, since σ−i is increasing, ui (σi (si) ,σ−i (s−i ) ,ω) − ui

(
σi

(
s′
i

)
,σ−i (s−i ) ,ω

)
increases in 

s−i by A2. In addition, by A3, F (s |ω;α ) increases in ω in the sense of first order stochas-
tic dominance. Then, by property MA of Theorem 3.3.10 in Müller and Stoyan (2002, p. 94), 
F (s−i |ω;α−i ) increases in ω according to the same order. Thus, the first inequality follows by 
Lemma 16. By A2, ui (σi (si) ,σ−i (s−i ) ,ω) − ui

(
σi

(
s′
i

)
,σ−i (s−i ) ,ω

)
increases in ω, for all 

s−i ∈ S−i ; this justifies the second inequality. This completes Step 1.
Step 2. Let ϕi

(
si;α′

i

)
be the maximal selection of ϕi

(
si;α′

i

)
, as in (1), and α′

i > α′′
i . Then,

Ui

(
α′

i ,α
) =

∫
Si×�

∫
S−i

ui

(
ϕi

(
si;α′

i

)
,σ−i (s−i ) ,ω

)
dF (s−i |ω;α−i ) dF

(
si ,ω;α′

i

)

≥
∫

Si×�

∫
S−i

ui

(
ϕi

(
si;α′′

i

)
,σ−i (s−i ) ,ω

)
dF (s−i |ω;α−i ) dF

(
si ,ω;α′

i

)

≥
∫

Si×�

∫
S−i

ui

(
ϕi

(
si;α′′

i

)
,σ−i (s−i ) ,ω

)
dF (s−i |ω;α−i ) dF

(
si ,ω;α′′

i

)
= Ui

(
α′′

i ,α
)
.

The two equalities are true by definition and because players’ signals are assumed independent 
given the state of the world, i.e. F (s−i |si ,ω;α−i ) = F (s−i |ω;α−i ). The first inequality follows 
by optimality. We know, by Lemma 3, that ϕi

(
si;α′′

i

)
increases in si . Then Step 1 guarantees 

the integral 
∫

S−i
ui

(
ϕi

(
si;α′

i

)
,σ−i (s−i ) ,ω

)
dF (s−i |ω;α−i ) is supermodular in (si,ω). Since 

F (si,ω;αi) increases in αi in the spm order, the second inequality follows by Lemma 5. �
Proof of Proposition 8. The cdf F (ω, si;αi) and the survival function F (ω, si;αi) write as

F (ω, si;αi) =
∫ si

min(Si )

F (ω |t;αi ) dF (t) and

F (ω, si;αi) = 1 − F (si) −
∫ max(Si )

si

F (ω |t;αi ) dF (t) ,

where F (si) stands for the marginal cdf of player i’s message, and F (ω |t;αi ) is the condi-
tional cdf of the fundamental given a message si = t . Let αi, α′

i ∈ [
α,α

]
satisfy αi > α′

i . Since 
F (si,ω;αi) increases in αi in the spm order, we have that, for all si ∈ Si and ω ∈ �,∫ si

min(Si )

[
F (ω |t;αi ) − F

(
ω

∣∣t;α′
i

)]
dF (t) = F (ω, si;αi) − F

(
ω, si;α′

i

) ≥ 0, (8)

∫ max(Si )

si

[
F (ω |t;αi ) − F

(
ω

∣∣t;α′
i

)]
dF (t) = F

(
ω, si;α′

i

) − F (ω, si;αi) ≤ 0, (9)∫ max(Si ) [
F (ω |t;αi ) − F

(
ω

∣∣t;α′
i

)]
dF (t) = H (ω) − H (ω) = 0,
min(Si )
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where (9) holds since the spm stochastic order implies that F (ω, si;αi) is increasing in αi for 
bivariate distributions (Müller and Stoyan, 2002).

Given (8), the set T (ω) �
{
t : F (

ω
∣∣t ′;αi

) − F
(
ω

∣∣t ′;α′
i

) ≥ 0 for all t ′ ≤ t
}

is non-empty. 
Since Si is compact, T (ω) has a supremum in Si for each ω. Then s∗

i

(
αi,α

′
i

) = infω supt T (ω)

is in Si . By construction, F
(
ω

∣∣si;α′
i

) �1 F (ω |si;αi ) for all si < s∗
i

(
αi,α

′
i

)
. Proceeding in a 

similar way, we get F (ω |si;αi ) �1 F
(
ω

∣∣si;α′
i

)
for all si > s∗∗

i

(
αi,α

′
i

)
.

By A3, F (s |ω;α ) first order stochastically increases in ω. By Müller and Stoyan (2002, 
p. 94), property MA of Theorem 3.3.10, F (s−i |ω;α−i ) increases in ω according to the same 
order. In addition, by Lemma 2, σ−i is increasing, and, by A2, ui is supermodular in ai and has 
increasing differences in (ai;a−i ,ω). Therefore, if ai ≥ a′

i and w ≥ w′, by Lemma 16

I (ω;α−i ) �
∫

S−i

[
ui (ai,σ−i (s−i ) ,ω) − ui

(
a′
i ,σ−i (s−i ) ,ω

)]
dF (s−i |ω;α−i )

≥
∫

S−i

[
ui (ai,σ−i (s−i ) ,ω) − ui

(
a′
i ,σ−i (s−i ) ,ω

)]
dF

(
s−i

∣∣ω′;α−i

)
≥

∫
S−i

[
ui

(
ai,σ−i (s−i ) ,ω′) − ui

(
a′
i ,σ−i (s−i ) ,ω′)]dF

(
s−i

∣∣ω′;α−i

)
= I

(
ω′;α−i

)
where the last inequality follows from A2. Hence I (ω;α−i ) increases in ω, for all ai ≥ a′

i .
Applying Lemma 16 again we get that∫

�

∫
S−i

ui (ai,σ−i (s−i ) ,ω)dF (s−i |ω;α−i ) dF (ω |si;αi )

−
∫
�

∫
S−i

ui

(
a′
i ,σ−i (s−i ) ,ω

)
dF (s−i |ω;α−i ) dF (ω |si;αi )

increases (decreases) whenever si < s∗
i

(
αi,α

′
i

)
(si > s∗∗

i

(
αi,α

′
i

)
) and player i chooses α′

i instead 
of αi (with α′

i < αi ). Then the incremental returns with respect to own action of the maximand 
in (1) are higher (smaller) at α′

i than at αi when the message is small (high). Since the latter is 
supermodular in ai , Proposition 8 follows from Lemma 7 in VZ-V (p. 348). �
Proof of Lemma 10. Let αi, α′

i ∈ [
α,α

]
. As λF (si,ω;αi) + (1 − λ)F

(
si ,ω;α′

i

)
is a convex 

combination of two cdf’s with the same marginals, it is a cdf with the same marginals.
Let α′′

i = λαi + (1 − λ)α′
i . Since F

(
si,ω;α′′

i

)
and λF (si,ω;αi) + (1 − λ)F

(
si,ω;α′

i

)
have 

the same marginal distributions, we can try to compare them in terms of the supermodular 
stochastic order. Let h (si ,ω) be a supermodular function with finite expectation with respect 
to both cdf’s. By Lemma 5, the following two conditions are equivalent

(i) F
(
si ,ω;α′′

i

) ≤ λF (si,ω;αi) + (1 − λ)F
(
si,ω;α′

i

) ∀ (si,ω) ∈ Si × �

(ii)
∫
Si×�

h (si ,ω)dF
(
si ,ω;α′′

i

) ≤ ∫
Si×�

h (si ,ω)d
[
λF (si,ω;αi) + (1 − λ)F

(
si,ω;α′

i

)]
.

Since expectation is a linear operator, condition (ii) is in turn equivalent to

(iii)
∫
Si×�

h(si, ω)dF
(
si , ω; α′′

i

) ≤ λ 
∫
Si×�

h(si, ω)dF(si, ω; αi) +(1 −λ) 
∫
Si×�

h(si, ω)dF(si,

ω; α′
i ).

Thus (i) is satisfied if and only if (iii) is fulfilled, which is exactly our claim. �
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Proof of Theorem 12. Let λ ∈ [0,1], α′
i and α′′

i denote two arbitrary elements of 
[
α,α

]
, and 

α′′′
i = λα′

i + (1 − λ)α′′
i . The following inequalities show our statement,

λUi

(
α′

i ,α
) + (1 − λ)Ui

(
α′′

i ,α
)

= λ

∫
Si×�

∫
S−i

ui

(
ϕi

(
si;α′

i

)
,σ−i (s−i ) ,ω

)
dF (s−i |ω;α−i ) dF

(
si ,ω;α′

i

)

+ (1 − λ)

∫
Si×�

∫
S−i

ui

(
ϕi

(
si;α′′

i

)
,σ−i (s−i ) ,ω

)
dF (s−i |ω;α−i ) dF

(
si ,ω;α′′

i

)

≥ λ

∫
Si×�

∫
S−i

ui

(
ϕi

(
si;α′′′

i

)
,σ−i (s−i ) ,ω

)
dF (s−i |ω;α−i ) dF

(
si ,ω;α′

i

)

+ (1 − λ)

∫
Si×�

∫
S−i

ui

(
ϕi

(
si;α′′′

i

)
,σ−i (s−i ) ,ω

)
dF (s−i |ω;α−i ) dF

(
si ,ω;α′′

i

)

≥
∫

Si×�

∫
S−i

ui

(
ϕi

(
si;α′′′

i

)
,σ−i (s−i ) ,ω

)
dF (s−i |ω;α−i ) dF

(
si ,ω;α′′′

i

) = Ui

(
α′′′

i ,α
)

where the first inequality is true by optimality, and the second one follows from the following 
argument. Consider the function∫

S−i

ui

(
ϕi

(
si;α′′′

i

)
,σ−i (s−i ) ,ω

)
dF (s−i |ω;α−i ) . (10)

Lemma 2 ensures ϕi

(
si;α′′′

i

)
is increasing in si , so we can use Step 1 in the proof of Proposition 7

to confirm that (10) is supermodular in (si,ω). Then the second inequality follows by Lemma 10, 
since F (si,ω;αi) is convex in αi in the spm stochastic order. �
Proof of Lemma 14. By Proposition 7 and Theorem 12, our conditions imply Ui

(
α′

i ,α
) − α′

i is 
convex in α′

i , ∀α ∈ [
α,α

]n and ∀i ∈ N , since the sum of convex functions is convex. It follows 
from this convexity property that Ui

(
α′

i ,α
) − α′

i is continuous in α′
i ∈ (α, α) and upper semi-

continuous at α′
i = α and α′

i = α (∀α ∈ [
α,α

]n). Thus, Ui

(
α′

i ,α
) − α′

i achieves its maximum 
in α′

i ∈ {α, α} for each α ∈ [
α,α

]n. The same convexity property also implies that, irrespective 
of the initial α ∈ [

α,α
]n, each player’s best reply will always be in {α, α}, i.e., one of the two 

extreme qualities at stage I, for generic games. Hence, the game is strategically equivalent to the 
game with action set {α, α} and payoffs in (7). �
Proof of Proposition 15. Part (i) is a direct consequence of Lemma 14 (via dominance argu-
ments). Parts (ii)–(iii) then follow via direct comparison of the binary payoffs of players. �
Appendix A. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.jet.2016.03.005.
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