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Abstract This paper provides sufficient conditions for comparing the choices of
different players in games of strategic complements. The main results require a weak
ordering relation on the best responses of players in the game and their constraint sets.
Under additional restrictions, we can also compare their relative payoffs. We offer three
applications of our idea to industrial organization and new models of behavioral eco-
nomics. Specifically, we study horizontal mergers in oligopolies, competition among
firms with differentiated demands and costs of production, and a model of biased
perceptions.

Keywords Quasisupermodular games · Asymmetric equilibria · Single-crossing
property
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1 Introduction

In many situations of interest, players that interact in the same environment display
different characteristics, for example, firms face different costs of production, workers
have different abilities, and people perceive reality in dissimilar ways. This paper
explains how differences across players affect their relative equilibrium actions and
payoffs. We focus on games of strategic complements.
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778 N. Lazzati

We model asymmetries among agents via an ordering relation on the set of players
that involves two conditions: The first one compares their possibilities to select higher
actions, and the second one contrasts their benefits from doing so via a natural restric-
tion on their best-reply correspondences. We say a player is higher than another one
if she has both a higher constraint set and higher incentives to increase own action.
Defined in this way, we show that higher players select higher equilibrium actions.
To perform these comparisons we use a binary relation on sets that is weaker than
the strong set order, frequently encountered in the literature of monotone compar-
ative statics. We finally show that our requirements on best-reply correspondences
hold if a single-crossing condition is satisfied across players’ marginal returns. From
a methodological perspective, the closest precedent is Amir (2008) who provides suf-
ficient conditions to contrast Nash equilibria of different games. Though the question
we answer is quite different in nature, the approach we use is similar.

We offer three applications of our idea to industrial organization and new models
of behavioral economics, which have been the motivation for this paper. The first
application studies incentives to form coalitions in supermodular games with positive
or negative externalities and can be used to extend one of the results of Davidson
and Deneckere (1985) to horizontal mergers in Bertrand competition. They show that
merging firms set higher prices at equilibrium and therefore make less profits than
firms outside the coalition. We show their result holds with much weaker assumptions
and is thereby robust to various specifications of demand and cost functions. The
second application compares the strategies of firms in the market as a consequence
of differentiated demands and costs of production. Our last application relates to the
model of biased perceptions in Heifetz et al. (2007). In their setting, players choose
their actions in the underlying game based on their perceived payoffs, but receive
rewards according to the true payoff functions (often called material profits). Our
result explains the behavior of the different players as a function of their preferences
and allows us to contrast their relative performance. We discuss the implications of
the latter findings regarding the dynamic evolution of preferences.

The remainder of the paper is organized as follows. Section 2 defines the class
of games we consider and presents the main results, Sect. 3 elaborates on the three
applications, Sect. 4 concludes.

2 Main results

Consider a game in normal form � ≡ (Ai ,�i ; i ∈ N ), where N = {1, 2 . . . , n}
is the set of players. Here Ai indicates the (pure) strategy space of player i , and
�i : Ai × A−i → R, with A−i ≡ � j �=i A j , is her payoff function. Given a strategy
profile a−i ∈ A−i , we denote by bi (a−i ) the best-response correspondence of player
i in N , that is,

bi (a−i ) =
{

ai ∈ Ai : ai ∈ arg max
a′

i ∈Ai

�i
(
a′

i , a−i
)}

. (1)

We write b (a) ≡ [
bi (a−i ) ; i ∈ N

]
for the best-response correspondence of all players

to a given profile of strategies a ∈ A ≡ �i Ai .
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Comparison of equilibrium actions 779

The action profile a∗ is a pure strategy Nash equilibrium if

a∗ ∈ b
(
a∗) ≡ [

b1
(
a∗−1

) × . . . × bn
(
a∗−n

)]
. (2)

That is, if a∗ is a fixed point of b (.).
All our results derive from a specific binary relation on b (.) and A. We impose

all required conditions on the best-response correspondences and strategy sets and
suggest afterward assumptions on the payoffs of players under which these conditions
hold. Throughout the analysis, we restrict attention to games of strategic complements
defined as follows.

Definition 1 We say � is a game of strategic complements if it satisfies, for all i ∈ N ,

(i) (Ai ,≥) is a complete sublattice of the lattice A;
(ii) bi (a−i ) has a largest and a smallest element, bi (a−i ) and bi (a−i ); and

(iii) bi (.) and bi (.) are increasing in a−i on A−i .1

We write b (.) and b (.) for the largest and smallest (coordinatewise) elements of b (.).
Conditions (i)-(iii) in Definition 1 guarantee (by Tarski’s fixed point theorem) that
b (.) and b (.) have a greatest and a least fixed point. It follows that any game of
strategic complements has a maximal and a minimal equilibrium, a∗ and a∗, with
a∗ = sup

{
a ∈ A : b (a) ≥ a

}
and a∗ = inf

{
a ∈ A : b (a) ≤ a

}
.

The approach we follow to compare equilibrium choices of players requires a binary
relation on both the strategy sets and the best-response correspondences. Let Z be a
partially ordered set. Let X ⊆ Z and Y ⊆ Z . We write X �o Y if for every x ∈ X and
y ∈ Y such that y > x , we have x ∈ Y and y ∈ X . It is clear from this definition that if
the supremum (infimum) of X and Y exists and is contained in X and Y , respectively,
then max Y ≯ max X (min Y ≯ min X ).2

Remark We write �o instead of ≥o as the former relation is neither transitive nor
antisymmetric, that is, it is not an order. When the underlying set, Z , is a chain, then
�o is equivalent to the strong set order, often invoked in the literature of games of
strategic complements.3

The analysis that follows requires the comparison of best-reply correspondences
for two given players i, j ∈ N . To facilitate the analysis, we write bi

(
a j , a−i, j

)
for

the best-reply correspondence of player i , where the first argument in bi is player j’s
action and a−i, j is the vector of actions of other players in N . In a similar way, we
write b j

(
ai , a−i, j

)
for the best-reply correspondence of player j .

We now define a binary relation on players. We say i � j if Ai �o A j and, for all
a′ ∈ Ai ∩ A j and all a−i, j ∈ A−i, j ≡ �k �=i, j Ak , we have

bi
(
a′, a−i, j

) �o b j
(
a′, a−i, j

)
. (3)

1 All our topological statements will tacitly be with the interval topology on A.
2 I would like to thank John Quah for proposing this relation.
3 According to the strong set order, we write X ≥S Y if, for every x ∈ X and y ∈ Y , we have that

x ∨ y ∈ X and x ∧ y ∈ Y.
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780 N. Lazzati

The following lemma states that if i � j then the action of player j cannot be higher
than the one of player i at any fixed point of the extremal elements of the best-reply
functions. Thus, the next result applies but is not restricted to the extremal equilibria
of the game, that is, a∗ and a∗.
Lemma 1 Suppose i � j and let a∗ be a fixed point of either b (.) or b (.) . Then
a∗

j ≯ a∗
i .

Proof Let a∗ be a fixed point of b (.) and suppose on the contrary that a∗
j > a∗

i . Since
Ai �o A j , a∗

j ∈ Ai and a∗
i ∈ A j . Then

a∗
i = bi

(
a∗

j , a∗−i, j

)
≥ bi

(
a∗

i , a∗−i, j

)
where the inequality follows by condition (iii) in Definition 1. But this means that

a∗
j = b j

(
a∗

i , a∗−i, j

)
> a∗

i ≥ bi

(
a∗

i , a∗−i, j

)

which contradicts (3) (with a′ = a∗
i and a−i, j = a∗−i, j ).

The proof for the other case is similar, so we omit it. ��
We now introduce a stronger version of �o. We write X �o Y if it does not exist

x ∈ X and y ∈ Y such that y > x . This definition guarantees that if the infimum of X
and the supremum of Y exist and are in X and Y , respectively, then max Y ≯ min X .4

We say i � j if Ai �o A j and, for all a ∈ Ai ∩ A j and all a−i, j ∈ A−i, j , we have

bi
(
a′, a−i, j

) �o b j
(
a′, a−i, j

)
. (4)

Remark The strict relation � relies on a stronger version of �o,�o, for the best-reply
correspondences but on the same condition for the constraint sets.

The next result extends the previous one to any Nash equilibrium.

Lemma 2 Suppose that either i � j or (i � j and their best-responses are single-
valued) and let a∗ be any fixed point of b (.). Then a∗

j ≯ a∗
i .

Proof Let i � j and suppose on the contrary that a∗
j > a∗

i . Since Ai �o A j , a∗
j ∈ Ai

and a∗
i ∈ A j . Since a∗

i ∈ bi

(
a∗

j , a∗−i, j

)
we get

a∗
i ≥ bi

(
a∗

j , a∗−i, j

)
≥ bi

(
a∗

i , a∗−i, j

)
where the second inequality follows by condition (iii) in Definition 1. But this means
that

b j

(
a∗

i , a∗−i, j

)
≥ a∗

j > a∗
i ≥ bi

(
a∗

i , a∗−i, j

)

4 A stronger version of this relation has been used by Antoniadou (2007) to study comparative statics in
the consumer problem.
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Comparison of equilibrium actions 781

which contradicts (4) (with a′ = a∗
i and a−i, j = a∗−i, j ).

Let i � j and assume their best-responses are single-valued. Suppose on the con-
trary that a∗

j > a∗
i . Since Ai �o A j , a∗

j ∈ Ai and a∗
i ∈ A j . Then

a∗
i = bi

(
a∗

j , a∗−i, j

)
≥ bi

(
a∗

i , a∗−i, j

)
where the inequality follows by condition (iii) in Definition 1. But this means that

b j

(
a∗

i , a∗−i, j

)
= a∗

j > a∗
i ≥ bi

(
a∗

i , a∗−i, j

)

which contradicts (4) (with a′ = a∗
i and a−i, j = a∗−i, j ). ��

We finally provide a positive statement that builds directly on the last two lemmas.
The new result requires the strategy spaces of players to be totally ordered.

Proposition 3 Assume the strategy space A is a chain. If i � j , then a∗
i ≥ a∗

j at any

fixed point a∗ of either b (.) or b (.). If either i � j or (i � j and their best-responses
are single-valued), then a∗

i ≥ a∗
j at any pure strategy Nash equilibrium.

Proof If A is a chain, then Ai is a chain for all i ∈ N . In this case, a∗
j ≯ a∗

i holds if
and only if a∗

i ≥ a∗
j and the result follows by Lemmas 1 and 2. ��

Let bi (a−i ) denote the best-response correspondence of player i to a profile of
strategies a−i of the other players. Figure 1 captures the insights behind Proposition 3
for a two-player game and one-dimensional action spaces. The black area contains all
the intersections of the best-response correspondences of players i and j , that is, the
pure strategy Nash equilibria. If condition (3) holds, then the reaction correspondence
of player i is above the inverse image of the reaction correspondence of player j . As
a consequence, the lowest and the highest intersections occur above the 45◦ line, and
the extremal equilibrium actions of player i are higher than the ones of player j . Since
a portion of the black area lies below the 45◦ line, the same comparison goes in the
opposite direction at some intermediate equilibria.

As Fig. 2 illustrates, our result holds at any equilibrium when either players are
strictly ordered (left panel)—and then the minimal selection of the best-response

Fig. 1 Comparing equilibrium
actions when i � j
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782 N. Lazzati

Fig. 2 Comparing equilibrium actions when (i) i � j (left panel); and (ii) i � j and their best-responses
are single-valued (right panel)

correspondence of player i is above the inverse image of any point in the reaction cor-
respondence of player j—or players’ best-responses are single-valued (right panel).5

We end this section by showing that the assumptions we impose on the best-
reply correspondences are satisfied under specific restrictions on the payoff functions.
Milgrom and Shannon (1994) show that conditions (ii) and (iii) in Definition 1 hold if,
in addition to condition (i), �i is upper semicontinuous and quasisupermodular in ai

for any a−i and has the single-crossing property in (ai ; a−i ). Since any supermodular
function is also quasisupermodular, and any function that has increasing differences
in (ai ; a−i ) also satisfies the single-crossing property, then ordinally supermodular
games encompass all supermodular and log-supermodular games further studied by
Milgrom and Roberts (1990), Vives (1990), and Topkis (1998). Quah and Strulovici
(2009) identify a new order on functions, the interval dominance order, that gener-
alizes the single-crossing properties. All of these papers provide alternative justifi-
cations for conditions (ii) and (iii) in Definition 1, based on various restrictions on
(Ai ,�i ; i ∈ N ). We next propose sufficient conditions for expressions (3) and (4).

Throughout, we write �i
(
ai , a j , a−i, j

)
for the payoff of player i . The first argument

of �i is player i’s choice, the second argument is the choice of player j , and the
last one is the vector of actions of other players in N . In a similar way, we write
� j

(
a j , ai , a−i, j

)
for the payoff of player j .

Proposition 4 Assume Ai �o A j and that, for all a, a′, a′′ ∈ Ai ∩ A j with a > a′′,

� j
(
a, a′, a−i, j

) − � j
(
a′′, a′, a−i, j

) ≥ (>) 0 �⇒ �i
(
a, a′, a−i, j

)
−�i

(
a′′, a′, a−i, j

) ≥ (>) 0. (5)

Then i � j . In addition, we obtain i � j if (5) is replaced by

� j
(
a, a′, a−i, j

) − � j
(
a′′, a′, a−i, j

) ≥ 0 �⇒ �i
(
a, a′, a−i, j

)
(6)

−�i
(
a′′, a′, a−i, j

)
> 0.

5 Notice that the intermediate equilibrium of the right panel goes in the expected direction even when
this equilibrium is unstable under a simple myopic best-response dynamics, that is, counterintuitive results
are unrelated to the instability of equilibria. Our outcome is therefore quite different from the comparative
statics analysis in supermodular games—see, for example, Echenique (2002).
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Comparison of equilibrium actions 783

Proof (i � j) Assume on the contrary that there exist a, a′ and a′′ with a > a′′
and a′ ∈ Ai ∩ A j such that a′′ ∈ bi

(
a′, a−i, j

)
, a ∈ b j

(
a′, a−i, j

)
, and either a /∈

bi
(
a′, a−i, j

)
or a′′ /∈ b j

(
a′, a−i, j

)
. Since Ai �o A j , then a′′ ∈ A j and a ∈ Ai . If

a /∈ bi
(
a′, a−i, j

)
, then

�i
(
a, a′, a−i, j

) − �i
(
a′′, a′, a−i, j

)
< 0.

By the contrapositive of (5)

� j
(
a, a′, a−i, j

) − � j
(
a′′, a′, a−i, j

)
< 0

contradicting the fact that a ∈ b j
(
a′, a−i, j

)
. If a′′ /∈ b j

(
a′, a−i, j

)
, then

� j
(
a, a′, a−i, j

) − � j
(
a′′, a′, a−i, j

)
> 0 �⇒ �i

(
a, a′, a−i, j

) − �i
(
a′′, a′, a−i, j

)
> 0

contradicting the fact that a′′ ∈ bi
(
a′, a−i, j

)
. Then the initial claim is false and i � j .

(i � j) Assume on the contrary that there exist some a, a′ and a′′ with a > a′′ and
a′ ∈ Ai ∩ A j such that a′′ ∈ bi

(
a′, a−i, j

)
and a ∈ b j

(
a′, a−i, j

)
. Since Ai �o A j ,

then a′′ ∈ A j and a ∈ Ai . Since a′′ ∈ bi
(
a′, a−i, j

)
, then

�i
(
a, a′, a−i, j

) − �i
(
a′′, a′, a−i, j

) ≤ 0.

By the contrapositive of (6)

� j
(
a, a′, a−i, j

) − � j
(
a′′, a′, a−i, j

)
< 0

which contradicts the fact that a ∈ b j
(
a′, a−i, j

)
. Then the initial claim is false and

i � j . ��
Condition (5) can be thought of as a single-crossing property in players’ marginal

returns to increasing own action. Given the strategy profile of the others, it states that
if player j finds it profitable to increase own action so does player i . If payoffs are
smooth, a stronger version of this condition is satisfied if ∂�i

(
a, a′, a−i, j

)
/∂ai ≥

∂� j
(
a, a′, a−i, j

)
/∂a j , for all a, a′ ∈ Ai ∩ A j and all a−i, j ∈ A−i, j . Condition (6)

is just a strict version of the latter.

3 Applications

This section offers three applications of Propositions 3 and 4. The first one studies
incentives to form coalitions in supermodular games with externalities and can be used
to extend one of the results of Davidson and Deneckere (1985) to horizontal mergers
in Bertrand competition. The second example refers to oligopolistic competition when
firms face different demands and production costs. The last one pertains to the area of
behavioral economics, and it is based on Heifetz et al. (2007).
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784 N. Lazzati

3.1 Coalitions in supermodular games with externalities

Consider an n-player symmetric game.6 Each player i chooses an action ai from a
compact set A ⊂ R, which is identical for all the players. Her payoff is given by

πi (ai , a−i ) : A × A−i → R (7)

where a−i ∈ A−i ≡ An−1. We assume πi (ai , a−i ) is continuous in a on A ≡ An and
has increasing differences in (ak, al) for all k �= l, k, l ∈ N . This game has (strict)
positive externalities if πi (ai , a−i ) is (strictly) increasing in a−i . If πi (ai , a−i ) is
(strictly) decreasing in a−i , we say the (strict) externalities are negative.

Suppose a group G1 of the players decide to form a coalition to set their strategies
together in order to maximize joint profits, for example, they decide to form a cartel.
Let G2 represent the other players. If the decision of joint maximization is common
knowledge, then the coalition game can be studied as a new game where players
perceive the following payoffs:

�i (ai , a−i ) =
∑

k∈G1

πk (ak, a−k) if i ∈ G1

� j
(
a j , a− j

) = π j
(
a j , a− j

)
if j ∈ G2.

(8)

Amir (2008) uses a similar approach to contrast Nash equilibrium payoffs with Pareto
optimal outcomes in supermodular games with externalities.

Since increasing differences are preserved by addition, the new game (A,�i ; i ∈ N )

also satisfies Definition 1. In addition, we observe that, with a > a′, a−k = (
a, a−i,k

)
and a′−k = (

a′, a−i,k
)
,

�i (a, a−i ) − �i
(
a′, a−i

)
= πi (a, a−i ) − πi

(
a′, a−i

) +
∑

k∈G1,k �=i

[
πk (ak, a−k) − πk

(
ak, a′−k

)]
(9)

� j
(
a, a− j

) − � j
(
a′, a− j

) = π j
(
a, a− j

) − π j
(
a′, a− j

)
(10)

for players in G1 and G2, respectively. If the game has positive externalities, then
πk (ak, a−k) ≥ πk

(
ak, a′−k

)
for all k ∈ G1, k �= i—when the externalities are strict,

the weak inequality is strict. It follows that, for all
(
a, a j,a−i, j

) = (
a, ai,a−i, j

)
and(

a′, a j,a−i, j
) = (

a′, ai,a−i, j
)
, (9) is higher than (10), that is, the marginal returns of

increasing own action are higher for the players in the coalition as compared to the
others. Denoting by i a coalition member and by j a player outside the coalition, the
last observation implies (by Proposition 4) that i � j (i � j) when the externalities

6 Formally, we say a game is symmetric if

πi (a1, . . . , an) = πσ(i)

(
aσ−1(1)

, . . . , aσ−1(n)

)

for all i ∈ N and all a ∈ A, where σ (i) is any permutation of N .
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Comparison of equilibrium actions 785

are positive (strictly positive). Since the opposite is true when the externalities are
negative, the same holds if we revert the names of the players. The next proposition
compares the equilibrium strategies of players inside and outside the coalition and
contrasts their relative performance.

Proposition 5 In the coalition game with positive (negative) externalities, members of
the coalition select, at the extremal equilibria, higher (lower) actions than the others.
Moreover, the profits of any coalition member are lower than the profits of any player
outside the coalition irrespective of the nature of the externalities.

If the externalities are strict, then these results hold at any pure strategy equilibrium.

The first sentence follows directly from Propositions 3 and 4. To show that a member
outside the coalition gets a higher payoff when the externalities are positive, we should
start by observing she shares (n − 2) adversaries with the coalition members and faces
the same actions with respect to them. The extra competitor is a coalition member who
selects a strategy higher than hers, and the opposite is true for players in G1. Since
payoffs have positive externalities in other players’ actions, then the reward of a player
outside the agreement is always higher than that of a coalition member. The result
follows because non-coalition players establish strategies at their individual payoff-
maximizing level while the others do not. The fact that a non-coalition member gets
a higher payoff when the externalities are negative follows by a similar argument.

This result can be used to generalize one of the outcomes of Davidson and Deneckere
(1985). They study incentives to merge when firms that produce symmetric differen-
tiated products engage in price competition and show that mergers are beneficial to
all firms but non-coalition members take a free ride and earn larger profits than the
coalition members. Their model assumes constant marginal costs, continuously dif-
ferentiable demand functions that increase in other firms’ prices and decrease in own
prices, and strictly concave profits that lead to single-valued best-responses. Proposi-
tion 5 shows their statement can be attained under much weaker conditions.

3.2 Oligopolistic competition

This application compares the equilibrium strategies of firms and their corresponding
profits as a consequence of differentiated demands and costs of production.

Consider a set N = {1, 2 . . . , n} of firms that compete in prices. The payoff function
of firm i is

�i (pi , p−i ) = (pi − ci ) Di (pi , p−i ) (11)

where p−i denotes the vector of other firms’ prices and Di (pi , p−i ) represents the
demand function of firm i. Without loss of generality, we restrict pi to some interval
[ci , p] for all i ∈ N . We assume the demand function Di (pi , p−i ) has increasing
differences in

(
pi , p j

)
for any firm j different from i , is decreasing and upper semi-

continuous in pi , and is increasing in p j , that is, products are gross substitutes. All
these conditions guarantee ([ci , p] ,�i ; i ∈ N ) is a supermodular game that satisfies
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786 N. Lazzati

Definition 1.7 In addition, let us denote the elasticity of demand of firm i as follows

εi (pi , p−i ) ≡ −pi∂ ln Di (pi , p−i ) /∂pi .

Let us assume firm i has both higher per-unit costs and lower elasticity of demand
than firm j . Then, for all p−i, j and all p, p′ ∈ [ci , p] ∩ [

c j , p
] = [ci , p],

1/ (p − ci ) − εi
(

p, p′, p−i, j
)
/p ≥ 1/

(
p − c j

) − ε j
(

p, p′, p−i, j
)
/p (12)

which is the same as to say ∂ ln �i
(

p, p′, p−i, j
)
/∂pi ≥ ∂ ln � j

(
p, p′, p−i, j

)
/∂p j .

In addition, the constraint set [c, p] is ascending in c so that [ci , p] �o
[
c j , p

]
. It

follows, by Propositions 4, that i � j . Therefore, by Proposition 3, the firm with higher
per-unit costs and lower elasticity of demand will set a higher price (at the extremal
equilibria). The next proposition captures this statement and compares firms’ relative
profits under the additional restriction of symmetric demands.

Proposition 6 If firm i has both higher per-unit costs and lower elasticity of demand
than firm j, then the price of firm i is higher than the price of j at the extremal
equilibria. Moreover, if demands are symmetric, the profits of the higher cost firm are
lower.

The fact that firms with higher per-unit costs and symmetric demands make less
profits follows from two sources. First, per-unit costs have a direct negative effect
on firms’ own payoffs. Second, low-cost firms set lower prices than high-cost firms,
which, since the goods are gross substitutes, benefits the former and makes the latter
ones worse-off.

3.3 Biased perceptions

Consider a game with symmetric payoffs where each player i chooses an action ai

from a compact chain A. Her payoff is given by

πi (ai , a−i , ω) : A × A−i × 	 → R (13)

where a−i ∈ A−i ≡ An−1 denotes the vector of other agents’ actions and ω ∈ 	 ⊆ R

is a payoff-relevant parameter. Assume πi (ai , a−i , ω) is upper semicontinuous in
ai for a−i fixed, is quasisupermodular in ai , and has the single-crossing property in
(ai ; a−i , ω) .

Although all individuals share the same payoffs, they differ in the way they perceive
the payoff-relevant parameter. Specifically, player i believes the value of ω is given by
ωi = ω + τi where τi ∈ [

τ , τ
] ⊆ R and τ < 0 < τ. Optimistic players overestimate

7 This game is also a game with strategic complementarities if ln
[
Di

(
pi , p−i

)]
has increasing differences

in
(

pi , p j
)

for any firm j different from i . When Di
(

pi , p−i
)

is differentiable in pi , the last condition is
equivalent to the property that each firm’s price elasticity of demand is a decreasing function of the prices
of the other firms’ products—see Topkis (1998).
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ω, that is, τi > 0; realistic players assess ω correctly, that is, τi = 0; and pessimistic
players underestimate the parameter, that is, τi < 0.

Substituting ω by τi in (13), player i’s perceived payoffs are given by

�i (ai , a−i , τi ) = πi (ai , a−i , ω + τi ) . (14)

These conditions describe a game of strategic complements that satisfies Definition
1. In addition, since πi has the single-crossing property in (ai ;ω), if τi > τ j , for all
a > a′,

� j
(
a, a′′, a−i, j , τ j

) − � j
(
a′, a′′, a−i, j , τ j

) ≥ (>) 0 �⇒ �i
(
a, a′′, a−i, j , τi

)
−�i

(
a′, a′′, a−i, j , τi

) ≥ (>) 0.

In words, if a player of a given type prefers a higher action, so does a player with
a higher type. Thus, we can use Propositions 3 and 4 to compare the behavior of
optimistic, pessimistic, and realistic players at the extremal equilibria. Moreover, if
players’ actions have either positive or negative externalities on other players’ payoffs,
we can also rank their true rewards

[
πi (ai , a−i , ω) ; i ∈ N

]
.

Proposition 7 In a game with biased perceptions, at the extremal equilibria, opti-
mistic players select higher actions than realistic players, and realistic players choose
higher actions than the pessimistic ones.

If there are positive externalities, realistic players outperform optimistic players;
if the externalities are negative, realistic players outperform the pessimistic ones.

The first statement follows directly from Propositions 3 and 4. To see that a realistic
player outperforms any optimistic one if the externalities are positive, notice she shares
(n − 2) competitors with the second one and therefore faces the same actions with
respect to them. Her extra rival is an optimistic player that selects a strategy higher
than hers, and the opposite is true for the optimistic player. Since players’ strategies
have positive externalities on other players’ payoffs, then the realistic player’s true
payoff is higher than that of the optimistic one. The result follows because optimistic
players do not set strategies at their individual payoff-maximizing level, while realistic
players do. A similar argument applies to the case of negative externalities.

This result has implications for the dynamic evolution of preferences. Recent studies
suggest that individuals within a generation behave rationally with respect to the
inherited preferences but that the distribution of preferences across the population
changes from one generation to the next under the pressure of differential material
rewards—see, for example, Kockesen et al. (2000). According to our analysis, if the
game has positive externalities, then optimistic players have less chances to survive
in the long run as compared to realistic players. If the externalities are negative, the
chances to survive are lower for the pessimistic players as compared to the realistic
ones.8

8 Our conclusion differs from the analysis of Heifetz et al. (2007) as they consider a strategic evolution of
preferences where players select own types as a best-response to the types selected by the others.
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4 Concluding remarks

This paper compares the equilibrium choices of players in games of strategic comple-
ments. We introduce differences across agents via an ordering relation on the set of
players, which is based on two conditions: The first one compares their possibilities
to select higher actions, and the second one contrasts their benefits from doing so
via a restriction on their best-reply correspondences. We show this binary relation on
the set of players has monotone implications on their equilibrium actions and (under
additional conditions) allows us to compare their corresponding payoffs. We then pro-
vide sufficient conditions on the payoff functions of players under which the previous
assumptions hold. The latter restrictions are based on the single-crossing property.

We offer three applications of our result and believe the idea might result useful in
other models of behavioral economics.

References

Amir, R.: Supermodularity and complementarity in economics: an elementary survey. South. Econ. J. 71,
636–660 (2005)

Amir, R.: Comparative statics of Nash equilibria. Unpublished (2008)
Antoniadou, E.: Comparative statics for the consumer problem. Econ. Theory 31, 189–203 (2007)
Davidson, C., Deneckere, R.: Incentives to form coalitions with Bertrand competition. RAND J. Econ. 16,

473–486 (1985)
Echenique, F.: Comparative statics by adaptive dynamics and the correspondence principle. Econometrica

70, 833–844 (2002)
Heifetz, A., Shannon, C., Spiegel, J.: The dynamic evolution of preferences. Econ. Theory 32, 251–286

(2007)
Kockesen, L., Ok, E., Sethi, R.: The strategic advantage of negatively interdependent preferences. J. Econ.

Theory 92, 274–299 (2000)
Milgrom, P., Roberts, J.: Rationalizability, learning, and equilibrium in games with strategic complemen-

tarities. Econometrica 58, 1255–1278 (1990)
Milgrom, P., Shannon, C.: Monotone comparative statics. Econometrica 62, 157–180 (1994)
Quah, J., Strulovici, B.: Comparative statics, informativeness, and the interval dominance order. Economet-

rica 77, 1949–1992 (2009)
Topkis, D.: Supermodularity and Complementarity. Princeton University Press, Princeton (1998)

123


	Comparison of equilibrium actions and payoffs across players in games of strategic complements
	Abstract
	1 Introduction
	2 Main results
	3 Applications
	3.1 Coalitions in supermodular games with externalities
	3.2 Oligopolistic competition
	3.3 Biased perceptions

	4 Concluding remarks
	References


