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1. Introduction

We derive a dynamic model of the firm in closed form and show that it can be used
for actual firm valuation. To test its empirical validity, we price firms in COMPUSTAT
in the period 1980–2015 and evaluate the results from three perspectives. First, we find
that the model produces consistent forecasts of stock prices in the sense that model
predicted values are very close to the actual market values, on average. Second,
we show that the model explains a large fraction (around 92%) of the variation
in current market prices. Third, we find that the temporary or short-run deviations
between market prices and model estimates can be economically exploited. Overall,
we believe these results suggest our model is a valuable pricing tool that may enhance
current approaches to firm valuation.

We use dynamic programming to develop a model of the firm in which the
latter chooses investment, labor, and how to finance its assets in every period. While
this type of model has been used extensively in corporate finance to explain firm
behavior, we introduce three fundamental features that make our model particu-
larly useful for asset pricing purposes. First, we invoke the two-fund separation
principle, which shows that, as long as we discount future cash flows with an appro-
priately risk-adjusted discount rate, we do not need to specify shareholders’ utility
functions in the valuation process beyond the assumptions discussed in Cass and
Stiglitz (1970). Second, we allow the firm to grow in the long run, which could be
interpreted as the firm facing a market size that increases over time, independent
of the short-term fluctuations generated by the business cycle. Third, we intro-
duce risky debt to our model and find an analytic solution, which, to the best of
our knowledge, is novel among existing discrete-time dynamic investment models
of the firm. In particular, debt in our model is protected by a positive net-worth
covenant and, in the event of bankruptcy, the firm pays the bankruptcy costs, is
reorganized under Chapter 11 of the U.S. Bankruptcy Code, and continues its op-
erations. This modeling strategy generates a debt behavior that is in line with the
empirical evidence. For instance, survey results from Graham and Harvey (2001)
suggest that most firms have a target leverage. Consistently, the firm in our model
chooses debt in every period following a target leverage that depends on its own
characteristics.

As mentioned above, an important advantage of our model regarding valuation
is that we solve it analytically. Closed-form equations are strongly preferred to
numerical approximations because the former yield extremely accurate values at very
low computing time. Indeed, a usual problem with the numerical solution of dynamic
programming models is the so-called Bellman’s curse of dimensionality. This problem
arises from the discretization of continuous state and decision variables, since the
computer time and space needed increase exponentially with the number of points
in the discretization (Rust, 1997, 2008). Thus, more accurate firm valuations imply
necessarily exponentially longer periods of computing time. In addition, explicit
solutions allow the user to estimate model parameters with ease.
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After presenting the firm model, we evaluate its actual pricing performance.
We first compute the ratio of the actual market prices to the values predicted by our
model and find that its mean value is around 1. This result means that our model
yields equity value estimates that are, on average, very close to market values. We
regress the market value of equity on the value estimated by our model and find that
we cannot reject the null hypothesis that the intercept is 0 and the slope is 1, which
suggests that our model produces unbiased estimates of stock prices. We also show
that our model predictions can explain a large fraction of the observed variability of
the stock prices. Specifically, the R2 coefficient is around 92%. This outcome turns
out to be better than the results reported by related papers (described below), and
implies a strong linkage between model forecasts and market values over time. We
implement this last regression which includes fixed effects at the industry level and
find that, jointly they are not statistically different from zero with a p-value close to
0.67. Moreover, we run an analogous regression at the firm level and find that we
cannot reject the null hypothesis that the intercept is 0 and the slope is 1 for about
71% of the firms at the 5% significance level and for 83% of the firms at the 1%
significance level.

While we show that our estimates are very close to market values, we also
find temporary deviations between stock prices and model estimates. We implement
a simple spread strategy to test whether we can take economic advantage of these
deviations. The spread strategy consists in ranking firms based on their ratios of
market prices to model estimates, then forming quintiles based on those ratios, and
finally buying the firms in the lowest quintile and selling the firms in the highest
quintile. Our results show that this strategy earns, on average, around 20%, 34%,
41%, 44%, and 48% returns after one, two, three, four, and five years of portfolio
formation, respectively. We also study the returns of the spread strategy in the context
of the Fama-French three-factor model (Fama and French, 1993) and find a positive
alpha that is statistically different from zero. This means that the positive returns of
our spread strategy cannot be simply accounted for by these factors. We obtain similar
results when we add a momentum factor to the Fama-French three-factor model and
when we employ the Fama-French five-factor model (Fama and French, 2015). As
benchmark, we calculate the returns of the spread strategy based on three well-
known financial ratios: market-to-book, price-earnings, and price-dividend. Based
on our model, we find that the spread strategy estimates consistently outperforms the
ones using these ratios.

To do the previous analyses, we estimate the structural parameters at the firm
level for all firms in our data set. In all our estimations, we perform a forward-looking
exercise in the sense that we use data available prior to the valuation period to make
out-of-sample predictions. Doing so is important because this procedure replicates
the situation a user would face when performing actual valuation.

This paper values public firms in COMPUSTAT. However, our valuation method
could also be implemented with firms for which market prices do not exist, as long
as financial statements are available for parameter estimation. These cases include,
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among others, private companies such as Koch Industries and Cargill, initial public
offerings such as Facebook in 2012 and Alibaba Group Holding in 2014, and firms’
new investment projects.

1.1. Literature review

Our paper contributes to two strands of literature in finance, namely, discrete-
time dynamic investment models of the firm and firm valuation models.

Several papers in corporate finance use different dynamic programming models
of the firm to explain firm choices (for a comprehensive review of this large litera-
ture, see Strebulaev and Whited, 2012). For instance, Moyen (2004, 2007), Hennessy
and Whited (2005, 2007), Hennessy, Levy and Whited (2007), Tserlukevich (2008),
Riddick and Whited (2009), and Hennessy, Livdan and Miranda (2010) use dynamic
programming models to rationalize a large number of stylized facts about firm be-
havior. We show that, after introducing some new features, this type of model can
also be used successfully for firm valuation. While this possibility was suggested by
Dixit and Pindyck (1994), we believe our paper is one of the first attempts in this
direction. As we mention earlier, a fundamental feature of our model is that we do
not need to specify shareholders’ utility function in the valuation process (beyond the
assumptions described in Cass and Stiglitz, 1970) by assuming the two-fund separa-
tion principle holds. Another important feature regarding valuation is the possibility
of firm growth in the long run. As documented by Lazzati and Menichini (2015),
secular growth can account for more than 30% of the value of the firm. This is of
particular importance for certain industries, such as manufacturers of chemical prod-
ucts and industrial machinery, and providers of communication services (Jorgenson
and Stiroh, 2000). In addition, as we explain above, we contribute to the literature by
introducing risky debt in closed form to our model. The fact that we obtain analytic
solutions is very important for the accuracy of the model predictions.

While our tests show that our model produces successful valuation results,
we also find that it performs likewise in some regards and better in some oth-
ers, when compared to other valuation models. Kaplan and Ruback (1995) and
Copeland, Weston and Shastri (2005), who implement the discounted cash flow model
(DCFM), show that their implementations produce value forecasts that are, as in our
case, roughly equal to market prices. With respect to the explanation of the variation
in current market prices, our model seems to outperform the results in some related
studies. Bernard (1995) compares the ability of the dividend discount model (DDM)
and the residual income model (RIM) to explain the observed variation in stock
prices. He finds that the RIM explains 68% of the variability in market values and
outperforms the DDM, which can only explain 29% of such variation.1 In a similar

1 The DDM, the DCFM, and the RIM are theoretically equivalent, but they differ with respect to the
information used in their practical implementation. The DDM uses the future stream of expected dividend
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study, Frankel and Lee (1998) test the RIM empirically and find that the model es-
timates explain around 67% of the variability in current stock prices. More recently,
Spiegel and Tookes (2013) use a dynamic model of oligopolistic competition to per-
form cross-sectional firm valuation and find that their model explains around 43% of
the variation in market values. While in all these papers the samples differ in terms of
firm composition and periods, we find that our model can explain a higher fraction
of the variability of the stock prices (around 92%).

The paper is organized as follows. In Section 2, we derive a dynamic version
of the DDM in closed form and explain its main parts. The empirical evaluation
of the performance of our model is in Section 3. Section 4 concludes. Appendix A
contains the proofs and Appendix B presents additional robustness checks regarding
the spread strategy returns.

2. A dynamic DDM

We derive a dynamic version of the standard DDM in closed form. We solve
the problem of the firm (i.e., share price maximization) using discrete-time, infinite-
horizon, stochastic dynamic programming. We obtain the solution within the context
of the adjusted present value (APV) method introduced by Myers (1974), which has
been used extensively with dynamic models of the firm (e.g., Leland, 1994; Goldstein,
Ju and Leland, 2001; Strebulaev, 2007). All parameters in our model are firm specific.
Thus, to simplify notation, we avoid using firm subscripts in the specification of the
model. (We will add firm-specific subindices later, in Subsection 3.2, when we study
the performance of the model.)

2.1. The problem of the firm

The life horizon of the firm is infinite, which implies that shareholders believe
it will run forever. The CEO makes investment, labor, and financing decisions at
the end of every period (e.g., month, quarter, or year) such that the market value of
equity is maximized. (In this paper, we write a tilde on X (i.e., X̃) to indicate that
the variable is growing over time.) Variable K̃t represents the book value of assets
while variable L̃t indicates the amount of labor used by the firm in period t . In each
period, installed capital depreciates at constant rate δ > 0 and firm investment is
endogenously determined by the capital decision as Ĩt+1 = K̃t+1 − (1 − δ)K̃t . The
debt of the firm in period t , D̃t , matures in one period and is rolled over at the end
of every period. We assume debt is issued at par by letting the coupon rate cB equal
the market cost of debt rB . In turn, this implies that book value of debt D̃t equals the
market value of debt B̃t . The amount of outstanding debt B̃t will increase or decrease

payments to shareholders. The DCFM is based on some measure of future cash flows, such as free cash
flows. Finally, the RIM uses accounting data (e.g., current and future book value of equity and earnings).
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over time, according to financing decisions. We let debt be risky, which implies that
the firm goes into bankruptcy when profits are sufficiently low. Following Brennan
and Schwartz (1984), we assume the debt contract includes a protective covenant
consisting in a positive net-worth restriction. In the event of bankruptcy, the firm has
to pay bankruptcy costs ξK̃t (with ξ > 0), such as lawyer fees and other costs of the
bankruptcy proceedings. Furthermore, we assume the bankrupt firm is reorganized
and continues its operations after filing for protection under Chapter 11 of the U.S.
Bankruptcy Code. This assumption is consistent with the empirical evidence showing
that the majority of firms emerge from Chapter 11, and only a few firms are actually
liquidated under Chapter 7 (see, e.g., Morse and Shaw, 1988; Gilson, John and Lang,
1990; Weiss, 1990). Finally, as in Hennessy and Whited (2007), we let bankruptcy
costs be proportional to the level of assets.

We introduce randomness into the model through the profit shock zt . Following
Fama and French (2000) and Zhang (2005), we let profits be mean-reverting by
assuming that random shocks follow an AR(1) process in logs

ln(zt ) = ln(c) + ρ ln(zt−1) + σxt, (1)

where ρ ∈ (0, 1) is the autoregressive parameter that defines the persistence of profit
shocks. In other words, a high ρ makes periods of high profit innovations (e.g.,
economic expansions) and low profit shocks (e.g., recessions) last more on average,
and vice versa. The innovation term xt is an independent and identically distributed
(iid) standard normal random variable and, since we present the pricing model at the
firm level (including the estimates of the corresponding parameters), our specification
allows for any kind of association among the innovation terms across firms. The
innovation term is scaled by constant σ > 0, which defines the volatility of profits
over time. Finally, constant c > 0 defines the mean profitability level of the firm and
captures efficiency differences across firms in the market due to, for instance, innate
technology, management competence, and input quality.2

Gross profits in period t are defined by the following function:

Q̃t = (1 + g)t[1−(αK+αL)]zt K̃
αK

t L̃αL

t , (2)

where zt is the profit shock in period t , αK ∈ (0, 1) represents the elasticity of capital,
and αL ∈ (0, 1) indicates the elasticity of labor (we further assume αK + αL < 1).
Constant g represents the growth rate of the firm and, with factor (1 + g)t[1−(αK+αL)],
profits, costs and firm size grow proportionately over time. Factor (1 + g)t[1−(αK+αL)]

allows us to use a standard normalization of growing variables that is required to
solve the problem of the firm (see, e.g., Manzano, Perez and Ruiz, 2005). According

2 See Ackerberg, Benkard, Berry and Pakes (2007) for an alternative way to introduce efficiency differences
across firms.
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to Equation (2), gross profits depend on a Cobb-Douglas production function with
decreasing returns to scale in capital and labor inputs.3

Every period, the firm pays operating costs f K̃t (with f > 0) and labor wages
ωL̃t (with ω > 0), while corporate earnings are taxed at rate τ ∈ (0, 1). Therefore,
the firm’s net profits in period t are

Ñt = (Q̃t − f K̃t − δK̃t − ωL̃t − rBB̃t )(1 − τ ). (3)

With all the previous information, we can state the dividend that the firm pays to
equity-holders in period t as

Ỹt = Ñt − [(K̃t+1 − K̃t ) − (B̃t+1 − B̃t )] − 	ξK̃t . (4)

According to Equation (4), the dividend paid to shareholders in period t equals
net profits minus the change in equity and, in the event of bankruptcy, minus the
bankruptcy costs. The indicator function 	 equals 1 if the firm goes into bankruptcy.
Given the positive net-worth covenant included in the debt contract, the event of
bankruptcy occurs when(

zK
αK

L
αL − fK − δK − ωL − rB
K

)
(1 − τ ) + K − 
K < 0, (5)

that is, when the after-shock book value of equity becomes negative.
We let rate rS represent the market cost of equity and rate rA denote the market

cost of capital. We also assume the secular growth rate is lower than the market cost
of capital (i.e., g < rA). Finally, as it is common with other valuation models (e.g.,
the Black-Scholes formula), we do not introduce transaction or adjustment costs to
our model.

Before we characterize the firm problem, we need to convert it into stationary, for
which we normalize the growing variables by the gross growth rate: Xt = X̃t/(1 +
g)t , with Xt = {Kt, Lt , Bt ,Qt ,Nt , Yt }. We let E0 indicate the expectation operator
given the information at t = 0, (K0, L0, B0, z0). Then, the problem of the firm is
to make optimal capital, labor, and financing decisions, such that the market value
of equity is maximized. Using the normalized variables and modifying the payoff
function accordingly, the maximized market value of equity can be expressed as

S(K0, L0, B0, z0) = max
{Kt+1,Lt+1,Bt+1}∞t=0

{
0, E0

∞∑
t=0

(1 + g)t∏t
j=0(1 + rSj

)
Yt

}
. (6)

Equation (6) says that the stock price is the summation of the maximized ex-
pected discounted future dividends of the firm. We solve the firm problem by sepa-
rating investment (and labor) from financing decisions, as shown by Modigliani and

3 Equation (2) can take on only positive values. However, the model can be easily extended to allow for
negative values of gross profits by subtracting a positive constant as a proportion of assets (e.g., aK̃t ) in
Equation (2). We prefer not to include this term as we find that only 0.35% of the observations in our
sample has negative gross profits.
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Miller (1958). This separation is possible in our dynamic model because debt is fully
adjusted in each period of time.

2.2. Model solution

Proposition 1 displays the closed form for the stock price when the firm does
not go into bankruptcy. It also shows the probability of bankruptcy and the optimal
leverage ratio analytically. (To help streamline the exposition, we solve the problem
of the firm—Equation [6]—in Appendix A.)

Proposition 1. The market value of equity is

S
(
K∗

t , L∗
t , B

∗
t , zt

) = [
ztK

∗αK

t L∗αL

t − fK∗
t − δK∗

t − ωL∗
t − rBB∗

t

]
(1 − τ )

+K∗
t − B∗

t + G(zt ), (7)

where the going-concern value is Gt (zt ) = M(zt )P ∗. Function M(zt ) is given by

M(zt ) = e
− 1

2 σ 2 (αK +αL)

[1−(αK +αL)]2

{(
1 + g

1 + rA

)
E
[
z

1/[1−(αK+αL)]
t+1 |zt

]
+
(

1 + g

1 + rA

)2

E
[
z

1/[1−(αK+αL)]
t+2 |zt

]
+ · · ·

}
(8)

with the general term

E
[
z

1/[1−(αK+αL)]
t+n |zt

]
=
(

c
1−ρn

1−ρ z
ρn

t e
1
2 σ 2 (1−ρ2n)

(1−ρ2)
1

[1−(αK +αL)]

) 1
1−(αK +αL)

, n = 1, 2, . . . (9)

and variable P ∗ takes the form

P ∗ = (
�∗αK

1 �∗αL

2 − f �∗
1 − δ�∗

1 − ω�∗
2

)
(1 − τ ) − rA�∗

1

+
(

1 + rA

1 + rB

)
(rBτ
∗ − λ∗ξ )�∗

1 (10)

with

�∗
1 =

⎡⎣( αK

rA

1−τ
+ f + δ

)1−αL (αL

ω

)αL

⎤⎦
1

1−(αK +αL)

(11)

and

�∗
2 =

[(
αK

rA

1−τ
+ f + δ

)αK (αL

ω

)1−αK

] 1
1−(αK +αL)

. (12)

The probability of bankruptcy is

λ∗ =
∫ x∗

c

−∞

1√
2π

e− z2

2 dz, (13)
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where

x∗
c = −σ −

√√√√√2

⎧⎨⎩σ 2 + ln

⎧⎨⎩
[
1 + 1

rB (1−τ )

]
ξ

√
2πτσ�

∗αK−1
1 �

∗αL

2

⎫⎬⎭
⎫⎬⎭. (14)

The optimal book leverage ratio is given by


∗ =
1 +

[
eσ(x∗

c − 1
2 σ)�∗αK−1

1 �
∗αL

2 − f − δ − ω
�∗

2
�∗

1

]
(1 − τ ) − ξ

1 + rB(1 − τ )
. (15)

Finally, the optimal decisions are

K∗
t+1 = (1 + g)E [zt+1|zt ]

1
1−(αK +αL) �∗

1,

L∗
t+1 = (1 + g)E [zt+1|zt ]

1
1−(αK +αL) �∗

2, and B∗
t+1 = 
∗K∗

t+1. (16)

The market value of equity shown in Equation (7) represents an analytic solution
of the Gordon Growth Model (Gordon, 1962) in the dynamic and stochastic setting.
The first three terms in Equation (7) represent the after-shock book value of equity,
while the last term, G(zt ), is the going-concern value. The latter depends on function
M(zt ), which captures the effect of the infinite sequence of expected profit shocks.
This sequence converges for each given zt as long as g < rA and ρ < 1 (the proof
is in Appendix A). Function G(zt ) also depends on variable P ∗, which denotes the
dollar return on capital minus the dollar cost of capital at the optimum (including
the interest tax shields and bankruptcy costs as financing side effects). The going-
concern value shows that, using only information about the current state (i.e., assets,
labor, debt, and gross profits), our model solves systematically for the full sequence
of expected future dividends (and, thus, does not require the calculation of a terminal
value). Our model also projects automatically the value of the real options (such as
the option to expand the business, extend the life of current projects, shrink firm size,
or even postpone investments) by allowing the firm to optimize decisions over time.4

As expected, optimal capital K∗
t+1 decreases with the market cost of capital

rA, operating costs f , depreciation δ, and labor costs ω. On the contrary, optimal
assets increase with the growth rate g, the efficiency parameter c, and the volatility
of innovations σ because they increment the expected profitability of capital via
Equation (3). The effects of αK, αL, and ρ depend on current profit shock zt , but
they are generally positive for standard values of the parameters. The sensitivity of
optimal labor L∗

t+1, with respect to the characteristics of the firm, is analogous to that

4 In a simpler version of this model, Lazzati and Menichini (2015) show that the value of the real options
can easily represent more than 8% of the stock price and is particularly important for certain industries,
such as in Oil and Gas Extraction. Thus, the inclusion of managerial flexibility is a key advantage of our
model over the static ones.
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of optimal assets. Furthermore, all the previous primitive features of the firm have
the same directional effects on optimal debt B∗

t+1. Finally, the income tax rate τ has a
negative effect on optimal assets and labor because the latter become less profitable
as the former is higher. It also has a negative effect on optimal debt for the great
majority of parameter values, including those used in this paper.

In a survey, Graham and Harvey (2001) provide empirical evidence suggesting
that most firms actually follow some form of target leverage. Consistently, our model
produces an optimal debt that is a constant proportion of optimal assets, with the factor
of proportionality given by 
∗ in Equation (15). This optimal ratio can be interpreted
as the target leverage of the firm. It is readily verified that 
∗ is strictly less than 1
and bounded below by 0, decreases in nondebt tax deductions (e.g., operating costs
f and depreciation δ) and the market cost of debt rB , and is an increasing function
of the income tax rate τ .

Finally, our model also yields a constant probability of bankruptcy, which is
in line with the findings of Kisgen (2006, 2009), who suggests that firms aim to
maintain their debt within certain credit ratings. Ou (2011) and Vazza and Kraemer
(2015) show that each credit rating implies a certain and stable default probability.
As expected, this probability increases with the operating costs f , depreciation δ, the
market cost of debt rB , and the income tax rate τ .

3. Testing the performance of the valuation model

We study two fundamental aspects of our dynamic model. First, we analyze
the consistency between the model estimates and the market prices. That is, we ad-
dress how close the predicted values by our model are to the actual market prices.
Complementing this analysis, we examine how much of the observed variation in
contemporaneous share prices is explained by the model estimates. Second, we inves-
tigate the possibility to use our model to economically exploit short-term differences
between actual and estimated stock values.

3.1. Sample and estimation procedure

We value firms in the COMPUSTAT database during the period 1980–2015.5 We
construct the sample using two data sources. Historical accounting data are obtained
from the COMPUSTAT annual files, while the corresponding stock price data are
obtained from the CRSP monthly files.

In all our empirical analyses, we ensure that accounting data are known at the
time the stock price is set in the exchange. Thus, we use the share price observed
five months later than the fiscal-year-end of the firm. For instance, we match the

5 Because we value COMPUSTAT firms during the period 1980–2015, our sample does not suffer from
the survivorship bias problem.
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accounting data of a December year-end firm with its closing stock price at the end of
May of the following year. Because our objective is to do out-of-sample predictions,
we estimate parameter values using the existing historical information up to the year
prior to the valuation period. All parameter estimates are firm specific.

We employ the method of moments and least squares to estimate parameters c,
ρ, σ , αK , αL, f , δ, ω, τ , rB, and ξ for each firm.6 We identify parameters f , δ, ω, τ ,
rB , and ξ for each firm by taking advantage of the variation over time of the following
ratios. The average of the ratio Selling, General, and Administrative Expense (XSGA)
to Total Assets (AT) helps us pin down the operating costs parameter (f ); the average
of the fraction Depreciation and Amortization (DP) to AT is informative about the
capital depreciation rate (δ); the average of the ratio Total Staff Expense (XLR) to
Number of Employees (EMP) helps us identify the labor wages (ω); and, the average
of the fraction Total Income Taxes (TXT) to Pretax Income (PI) helps us pin down
the corporate income tax rate (τ ). Regarding the financing side, the average of the
proportion Total Interest and Related Expense (XINT) to Total Liabilities (LT) is
informative about the market cost of debt (rB), while the average of the fraction LT
to AT in Equation (15) helps us identify the costs of bankruptcy (ξ ).

Based on the procedure employed by Moyen (2004), we obtain parameters
c, ρ, σ, αK and αL using the firm’s autoregressive profit shock process, ln(zt ) =
ln(c) + ρ ln(zt−1) + σxt , and the gross profits function, Q̃t = (1 + g)t[1−(αK+αL)]

zt K̃
αK

t L̃
αL

t . The COMPUSTAT data items we use with these equations are Gross
Profit (GP), AT, and EMP. We regress (log) gross profits on (log) assets and (log)
labor, which is informative about the elasticity parameters αK and αL.7 Firms with
lower curvature of the production function should have less responsive profits to
changes in capital and labor inputs. We employ the residuals from that regression
to recover the fundamental characteristics of the driving process of z using the first-
order autoregression described above. Accordingly, the intercept from that regression
helps us identify the efficiency parameter (c). The coefficient estimate on ln(zt−1)
provides information about the persistence parameter (ρ), while the variability of the
residuals is informative about the volatility of profit shocks (σ ).

We use the Fama-French three-factor model to calculate the market cost of eq-
uity, rS , for each firm. We obtain the three monthly factors (i.e., RM − Rf , SMB,
and HML) from Ken French’s Web site and monthly stock price data from CRSP.
We use the 10-year T-Bond yields as the risk-free interest rate. Lee, Myers and
Swaminathan (1999) and Francis, Olsson and Oswald (2000) also use this factor

6 In a simpler but related version of our model, Lazzati and Menichini (2015) perform a sensitivity analysis
of the stock price with respect to model parameters and find that firm primitives such as the efficiency
parameter (c), the persistence of profit shocks (ρ), the curvature of the production function with respect
to capital (αK ), and the market cost of capital (rA) are the ones with the largest impact on the stock price.
This type of analysis could help practitioners improve the implementation of the model.

7 This is a standard procedure in the empirical economics literature (see, e.g., Balistreri, McDaniel and
Wong, 2003; Fox and Smeets, 2011; Young, 2013).
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model to calculate discount rates. However, while they implement it at the industry
level, we do so at the firm level. We then use rS and rB to calculate the market
cost of capital, rA, by computing the before-tax, weighted average cost of capital,
as required by the APV method. Finally, following Lakonishok, Shleifer and Vishny
(1994), we calculate the growth rate, g, for each firm by averaging the yearly per-
cent change in Sales/Turnover (SALE) during the five years prior to the valuation
period.

To improve the accuracy of the estimation, we use all the historical data available
for each firm and require at least 20 observations before the valuation period. As we
described before, we use the data available prior to the valuation period in order
to make out-of-sample predictions. We also eliminate observations with missing
data and trim the ratios at the lower and upper one-percentiles to diminish the
impact of outliers and errors in the data. The final sample includes 11,318 firm-
year observations.

3.2. Explanation of contemporaneous stock prices

We study the consistency between our model estimates and market prices. To
this end, for each firm-year observation in the period 1980–2015, we construct the
market-to-value ratio (Pit/Sit), which is the market value of equity (Pit) divided by the
equity value estimated by our dynamic model (Sit), for firm i in period of time t (i.e.,
year t). Figure 1 shows the evolution of the cross-sectional average market-to-value
ratio for each period of time. It shows that the mean ratio is close to the value of 1 for
the majority of years. The figure also shows that the ratio moves away from 1 during
periods of strong market movements, such as before and after the Great Recession of
2008, returning toward 1 in the subsequent periods.

Complementing the previous analysis, Figure 2 shows the time series average
market-to-value ratio for each firm in the sample. Likewise the previous figure,
it shows that the mean ratio is close to the value of 1 for the great majority of
firms.

Panel A in Table 1 reports the summary statistics for the market-to-value ratio
for all firms. The table shows that the unconditional mean of P/S is around 1.03,
which implies that the mean observation of the market value of equity is almost equal
to the mean model estimate. The median of P/S for all firms and years has a value
of 0.98. We believe the difference between the mean and the median is reasonable
because the market-to-value ratio is bounded below at 0 but unbounded above, which
creates a distribution of P/S that is skewed to the right. Panel B in Table 1 presents
different measures of central tendency that further corroborate our first result. For
instance, it shows that around 60% of the model estimates are within ±15% of the
observed values, which is in line with Kaplan and Ruback (1995) and Liu, Nissim
and Thomas (2002).

We compute the time series average P/S ratio for each firm and, consistently
with Figure 2, we find that around 85% of those time series averages are within
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Figure 1

Evolution of the market-to-value ratio

The figure displays the evolution over time of the cross-sectional mean market-to-value ratio for the sample
firms in the period 1980–2015. The market-to-value ratio is the market value of equity divided by the
value estimated by the model.

±15% of the value of 1. To investigate this observation further, we test the null
hypothesis that the time series mean P/S ratio is equal to 1 for each individual firm
in the sample. We find that we cannot reject the null hypothesis for about 87% of the
firms at the 5% significance level and around 95% of the firms at the 1% significance
level. We also study whether the fraction of firms for which we cannot reject that
null hypothesis changes significantly across industries, according to the Standard
Industry Classification (SIC). As Table 2 suggests, we do not find evidence of this
sort of variation in our sample. Across industries, the fraction of firms for which we
cannot reject the null hypothesis is fairly stable.8

The previous results show that market values and model estimates are very
close to each other. We now study the level of linear association between those two
variables, as well as the proportion of the variation in current prices that is explained
by the predictions of our model. This analysis highlights the goodness of fit of

8 There are no firms in the sample belonging to Agriculture, Forestry, and Fishing, or Construction
industries. For that reason, we did not include those industries in Table 2.
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Figure 2

Average market-to-value ratio across firms

The figure displays the time series average of the market-to-value ratio across firms in the sample. The
sample period is 1980–2015. The market-to-value ratio is the market value of equity divided by the value
estimated by the model. The dotted lines are located at ±15% from the value of 1.

our valuation model. Accordingly, we start estimating the following fixed effects
regression model

Pit = α + αj + βSit + εit, (17)

where t indexes the period (i.e., year), εit is an iid random term, and αj indicates the
SIC industry (aggregated at the SIC group level) to which the firm belongs. In theory,
an intercept, α, of 0 and a slope, β, of 1 would suggest that our model produces
unbiased estimates of market values. In addition, we should reject the possibility
that the fixed effects are different from zero. Table 3 shows the results from this
regression. We find that we cannot reject the null hypothesis that the intercept is 0
and the slope is 1 with a p-value of around 0.16. In addition, the industry-level fixed
effects are jointly not statistically different from zero with a p-value close to 0.67.
Finally, with an R2 value of 92.4%, the dynamic DDM explains a large proportion
of the variation in current stock prices. In untabulated results, we find that omitting
fixed effects in the previous specification of the model generates almost identical
results.

The R2 coefficient generated by our model is larger than the ones found by related
valuation studies, such as Bernard (1995), Frankel and Lee (1998), and Spiegel and
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Table 1

Valuation results

The table shows the valuation results of the dynamic model for the sample in the period 1980–2015. P/S
is the market-to-value ratio (i.e., the market value of equity divided by the equity value estimated by the
model). The first line in Panel B shows the percentage of times that the value estimated by the model
is within 15% of the market value of equity. The second line in Panel B shows the median value of the
absolute difference between the equity value estimated by the model and the market value of equity (in
percentage). The third line in Panel B shows the median value of the squared difference between the value
estimated by the model and the market value of equity (in percentage). Standard errors are in parentheses.

P/S

Panel A: Summary statistics

Mean 1.03
(0.50)

Median 0.98
Interquartile range 0.41

Panel B: Performance measures

Percentage within 15% 59.98%
Median absolute error 20.86%
Median squared error 4.35%

Table 2

Significance of the mean market-to-value ratio by industry

The table shows the proportion of firms for which the null hypothesis that the mean market-to-value ratio,
P/S, is equal to 1 cannot be rejected for different SIC industries, aggregated at the division level. The null
hypothesis is tested for each individual firm. Results are shown for significance levels of 5% and 1%. The
market-to-value ratio is the market value of equity divided by the value estimated by the model.

SIC industry 5% Level 1% Level

Mining 85.71% 85.71%
Manufacturing 86.21% 94.25%
Transportation and Public Utilities 90.91% 100.00%
Wholesale Trade 83.33% 100.00%
Retail Trade 85.71% 95.24%
Finance, Insurance & Real Estate 93.55% 96.77%
Services 100.00% 100.00%

Sample 87.40% 94.66%

Tookes (2013)—their R2 coefficients are 68%, 67%, and 43%, respectively. As a
benchmark, Table 3 also displays the results from regressing the market value of
equity on the book value of equity, net earnings, and dividends. In each of the three
cases, the R2 is below the one we obtain using Sit as the regressor.
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Table 3

Regression of the market value of equity

The table shows the results from different regressions of the market value of equity, including fixed effects
at the industry level. In column 1, the regressor is the equity value estimated by the model; in column 2,
the regressor is the book value of equity; in column 3, the regressor is net income; and in column 4, the
regressor is dividends. The sample is composed of COMPUSTAT firms in the period 1980–2015. Standard
errors are in parentheses, computed using the Newey-West (1987) procedure with four lags. Row-labeled
Joint test: αj = 0 shows the p-values of a joint test of the null hypothesis that all industry fixed effects are
zero. Row-labeled Joint test: α = 0 and β = 1 shows the p-values of a joint test of the null hypothesis that
the intercept is 0 and the slope is 1.

Variable (1) (2) (3) (4)

Intercept 81.12 1587.71 1679.14 3192.15
(79.77) (146.13) (130.75) (151.83)

Equity value estimate 1.00
(0.024)

Book value of equity 1.34
(0.139)

Net earnings 10.20
(0.649)

Dividends 24.48
(1.507)

Joint test: αj = 0 0.666 0.000 0.000 0.000
Joint test: α = 0 and β = 1 0.159
R2 0.924 0.711 0.767 0.677

As before, we provide further corroboration that our model works well at the
individual firm level. To this end, we test the null hypothesis that αi = 0 and βi = 1
for the regression model

Pit = αi + βiSit + εit (18)

individually for each firm i, where t indexes the period (i.e., year) and εit is an iid
random term. We find that we cannot reject the null hypothesis for about 71% of the
firms at the 5% significance level and around 83% of the firms at the 1% significance
level.

While we have used our model to predict prices, it can be easily adapted to
predict firm returns. Specifically, the expected (gross) return of firm i in the next
period t + 1 can be expressed as follows:

E[rit+1] = Sit+1

Pit
, (19)

where Pit is the observed market price of firm i in period of time t and Sit+1 is the price
of the same firm predicted by our model for one year in the future (with the available
data till year t). In particular, we calculate Sit+1 by first determining the state of
the model in t + 1, (K∗

t+1, L
∗
t+1, B

∗
t+1, E[zt+1|zt ]), and then using it in Equation (7).
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As we did with prices, we can compare the expected returns predicted by our model
with the observed stock returns. To do so, the realized (gross) stock return is given
by

rit+1 = Pit+1

Pit
. (20)

With these returns, E[rit+1] and rit+1, we then repeat all the tests described above
for the relation between predicted prices, Sit, and observed prices, Pit. We find
almost identical results regarding intercept, slope, and industry fixed effects. The
sole difference is that the R2 of the regression is now around 35%.

Overall, the results in this subsection suggest that our dynamic DDM produces
equity value estimates that are consistent with market prices and explain a large
part of the variation in current stock prices. We next explore the possibility to use
the model to economically exploit short-run differences between market values and
model estimates.

3.3. Portfolio strategy returns

We just showed that our dynamic DDM produces value estimates that are very
close to contemporaneous share prices. However, our results also suggest that the
linear association is not perfect, which means that there are temporary or short-run
deviations between market prices (P) and estimated values (S) for individual stocks
in certain years. We show that these differences can be economically exploited.
Subsequently, we evaluate the risk of the resulting returns.

We use the ratio of market prices to model predictions P/S across firms to
implement a spread strategy that consists of buying stocks that seem undervalued—
according to our model—and selling stocks that seem overvalued—again, according
to our model. Specifically, on June 1 of each year, we first rank the firms in the sample
based on their demeaned P/S ratio. We form quintiles based on that P/S ratio, where
lower quintiles include firms with low P/S and higher quintiles include firms with
high P/S. The last step consists of implementing a simple spread strategy (which we
call Q1–Q5) by taking a long position in the bottom quintile (Q1) and a short position
in the top quintile (Q5). For this study, we take an equal weighted position in each
firm. The resulting spread strategy has zero cost.

The motivation for the spread strategy is quite simple: Firms in the lower quintiles
have market prices that are low relative to our model predictions. And, we believe
these firms will experience higher future stock returns than firms in the higher
quintiles. The opposite reasoning holds for firms in the higher quintiles. As we just
described, we construct the quintiles using demeaned measures of the P/S ratios. The
objective of this demeaning is to fully exploit short-term deviations between stock
prices and model estimates. Appendix B compares the returns of the spread strategy
with and without demeaning, ascertaining the relevance of this step.
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We evaluate our spread strategy using firm data from 1980 through 2015. Thus,
we are able to implement the spread strategy 35 times (i.e., years). We refer to each
implementation as a portfolio. We track the cumulative returns of each portfolio over
the following 60 months after formation (or the longest possible period for the most
recent four years).

Panel A in Table 4 displays the outcomes of these portfolios. The column labeled
Q1–Q5 shows that the spread strategy earns 20.26%, 33.67%, 40.51%, 44.07%,
and 47.88% on average over the 12, 24, 36, 48, and 60 months following portfolio
formation, respectively. The last column, % Winners, reports the percentage of periods
in which the spread strategy earns positive cumulative returns. Specifically, it shows
that, after 12 months of portfolio formation, this strategy obtains positive cumulative
results 98.08% of the time, and that after 24 months of portfolio formation the strategy
produces positive cumulative returns in 100% of the implementations.

To appreciate the magnitude of the results of our strategy, we compare them with
the Q1–Q5 spread strategies that use demeaned ratios of market-to-book (P/B), price-
earnings (P/E), and price-dividend (P/D) to construct the quintiles. These three are
among the most well-known financial ratios that have been used for predicting stock
returns (Fama and French, 1992) and to assess valuation outcomes (e.g., Frankel
and Lee, 1998). Panels B–D of Table 4 show that the spread strategy using P/S
outperforms the spread strategies based on P/B, P/E, and P/D in each of the five
investment horizons. For example, over the period of 36 months, the P/S portfolios
yield, on average, roughly 7%, 20%, and 20% more than the P/B, P/E, and P/D
portfolios, respectively. Column 3 of Table 4 shows the annualized Sharpe ratios,
suggesting that the better performance of the P/S portfolios still holds if we adjust
the corresponding returns in terms of risk. Finally, the percentage of winner periods
with the spread strategy based on our model estimates is larger than those based on
the P/B, P/E, and P/D ratios.

Complementing our previous results, Figure 3 displays the evolution of the
average returns of the Q1–Q5 spread strategy based on P/S over the 60 months
after portfolio formation. The concavity, or flattening of the curve, suggests that the
benefits from the information available at the moment of portfolio formation naturally
diminish as time passes. As benchmark, Figure 3 also shows the lower average returns
obtained by the spread strategies based on P/B, P/E, and P/D over time.

We finally ascertain the risk of the Q1–Q5 spread strategy returns by relating
our results to the Fama-French three-factor model of stock returns (Fama and French,
1993). They find that the expected return on a stock in excess of the risk-free rate,
E(R) − Rf , can be explained by these three factors:

1. The expected return on the market portfolio in excess of the risk-free rate,
E(RM ) − Rf . This factor proxies for systematic risk.

2. The expected return on a portfolio of small stocks minus the expected return
on a portfolio of big stocks (Small Minus Big [SMB]). As Fama and French
(1993) suggests, this variable might be associated with a common risk factor
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Table 4

Cumulative Q1–Q5 spread strategy returns

The table presents the average cumulative returns of four strategies. The strategies are based on the ratios:
the market-to-value ratio (P/S), the market-to-book ratio (P/B), the price-earnings ratio (P/E), and the
price-dividend ratio (P/D). Each strategy ranks firms based on their corresponding ratios and groups them
in quintiles. The spread strategy (Q1–Q5) consists in buying firms in the bottom quintile (Q1) and selling
firms in the top quintile (Q5). P/S portfolios refers to the strategy based on the P/S ratio; P/B portfolios
refers to the strategy based on the P/B ratio; P/E portfolios refers to the strategy based on P/E ratio;
and P/D portfolios refers to the strategy based on the P/D ratio. Rows Ret12, Ret24, Ret36, Ret48, and
Ret60 show 12-, 24-, 36-, 48-, and 60-month magnitudes, respectively. Column Q1–Q5 shows average
cumulative returns. Column SE shows annualized standard errors. Column Sharpe ratio shows annualized
Sharpe ratios. Column % Winners shows the percentage of winning periods.

Q1–Q5 SE Sharpe ratio % Winners

Panel A: P/S portfolios

Ret12 20.26%*** 0.16 1.22 98.08%
Ret24 33.67%*** 0.24 1.33 100.00%
Ret36 40.51%*** 0.28 1.40 100.00%
Ret48 44.07%*** 0.34 1.25 100.00%
Ret60 47.88%*** 0.40 1.17 100.00%

Panel B: P/B portfolios

Ret12 15.02%*** 0.14 1.01 92.86%
Ret24 27.11%*** 0.22 1.17 98.21%
Ret36 33.06%*** 0.26 1.23 96.43%
Ret48 36.37%*** 0.31 1.13 94.64%
Ret60 39.46%*** 0.38 1.01 94.64%

Panel C: P/E portfolios

Ret12 10.00%*** 0.19 0.47 80.36%
Ret24 11.23%** 0.38 0.27 82.14%
Ret36 20.22%*** 0.39 0.48 82.14%
Ret48 24.57%*** 0.58 0.40 80.36%
Ret60 28.69%*** 0.65 0.43 78.57%

Panel D: P/D portfolios

Ret12 9.40%*** 0.23 0.36 76.79%
Ret24 18.41%*** 0.32 0.53 76.79%
Ret36 20.05%*** 0.35 0.54 76.79%
Ret48 26.24%*** 0.42 0.60 82.14%
Ret60 30.86%*** 0.52 0.57 82.14%

***, **, * indicate statistical significance at the 0.01, 0.05 and 0.10 level, respectively.

that explains the observed negative relation between firm size and average
return.

3. The expected return on a portfolio of value stocks (high book-to-market
ratio stocks) minus the expected return on a portfolio of growth stocks (low
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Figure 3

Cumulative spread strategy returns

The figure displays the cumulative returns of the spread strategies for the P/S, P/B, P/E, and P/D ratios
during the 60 months following portfolio formation. These strategies are constructed with the sample firms
in the period 1980–2015. P/S is the market-to-value ratio (i.e., the market value of equity divided by the
equity value estimated by the model). P/B is the market-to-book ratio (i.e., the market value of equity
divided by the book value of equity). P/E is the price-earnings ratio (i.e., the market value of equity divided
by the firm’s net income). P/D is the price-dividend ratio (i.e., the market value of equity divided by the
firm’s dividend). The spread strategies are formed by sorting firms into quintiles according to their P/S,
P/B, P/E, and P/D ratios. The spread strategy consists in buying firms in the bottom quintile and selling
firms in the top quintile.

book-to-market ratio stocks; High Minus Low [HML]). The same authors
suggest that this variable might be associated with a common risk factor that
explains the observed positive relation between the book-to-market ratio and
average return.

We then study whether the positive returns shown in Table 4 for the Q1–Q5
spread strategy based on the P/S ratio can be explained by the exposure to the risk
factors proposed by the Fama-French model. Accordingly, we estimate the next
model,

Rst − Rft
= α + β1(RMt

− Rft
) + β2SMBt + β3HMLt + εst, (21)

where we regress the excess (monthly) returns of the spread portfolios on the three
factors. In this equation, s indicates the specific portfolio from 1 to 35, t denotes the
month of the return, and εst is an iid random term. The first row in Table 5 contains
the results from Equation (21). The alpha takes a value of 0.011 and is statistically
significantly different from zero (p-value = 0). This means that the positive returns
of our spread strategy cannot be accounted for by the factors in the Fama-French
three-factor model.
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Table 5

Risk exposure of the Q1–Q5 spread strategy

The table shows the results from regressions of the spread strategy’ excess returns on three factor models.
FF3 refers to the Fama-French three-factor model, FF3 plus momentum refers to the Fama-French three-
factor model adding a momentum factor, and FF5 refers to the Fama-French five-factor model. The
regressor is the excess return of the P/S spread strategy, which is based on the ranking of the market-to-
value ratio (P/S). Rm-Rf is the excess return on the market, SMB (Small Minus Big) is the return on a
portfolio of small stocks minus the return on a portfolio of big stocks, HML (High Minus Low) is the return
on a portfolio of value stocks minus the return on a portfolio of growth stocks, MOM (Momentum) is the
return on a portfolio of firms with high prior return minus the return on a portfolio of firms with low prior
return, RMW (Robust Minus Weak) is the return on a portfolio of firms with robust operating profitability
minus the return on a portfolio of firms with weak operating profitability, and CMA (Conservative Minus
Aggressive) is the return on a portfolio of firms with conservative investment minus the return on a portfolio
of firms with aggressive investment. The sample is composed of the strategy’s returns during the period
1980–2015. p-Values are in parentheses, computed using Newey-West (1987) errors with four lags.

Specification Alpha Rm-Rf SMB HML MOM RMW CMA

FF3 0.011*** −0.010 −0.098*** 0.055
(0.000) (0.621) (0.002) (0.147)

FF3 plus momentum 0.011*** −0.011 −0.099*** 0.049 −0.023
(0.000) (0.591) (0.002) (0.212) (0.292)

FF5 0.012*** −0.014 −0.128*** 0.054 −0.143** −0.025
(0.000) (0.534) (0.000) (0.339) (0.020) (0.761)

***, **, * indicate statistical significance at the 0.01, 0.05 and 0.10 level, respectively.

To shed more light on the robustness of our results, we study the returns of
the stocks in each of the five quintiles. For this analysis, we assume that we pur-
chase the firms included in each of those quintiles and hold the resulting portfolios
for up to 60 months. Thus, for each quintile, we have 35 portfolios (from 1980
through 2015), and we hold each of them for 60 months. Recall that firms are first
ranked according to their P/S ratios and then grouped in quintiles. Thus, if low (high)
P/S ratios are indeed capturing temporary undervaluation (overvaluation), then we
should observe that average returns decrease across quintiles. Table 6, which ex-
hibits the average return for each quintile over the 12, 24, 36, 48, and 60 months
after portfolio formation, shows this is in fact the case. The returns across quintiles
(from Q1 through Q5) decrease monotonically for all the time horizons considered.
For instance, they go from a positive average return of 16.34% for Q1 after one
year of portfolio formation to an average return of −3.92% for Q5 over the same
period.

We also analyze the returns of the five quintiles in the context of the Fama-French
three-factor model. To this end, we reproduce Equation (21) for each quintile and
show the results in Table 7. Across quintiles, the alphas exhibit a diminishing pattern,
going from a positive value of α = 0.010 for Q1 to a negative value of α = −0.002
for Q5. This result is in line with our previous finding about average returns in
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Table 6

Cumulative quintile portfolio returns

The table presents the quintile portfolio average cumulative returns. The quintiles Q1 through Q5 are
constructed based on the ranking of the market-to-value ratio (P/S). Ret12, Ret24, Ret36, Ret48, and Ret60
are the average 12-, 24-, 36-, 48-, and 60-month portfolio returns, respectively. The sample is composed
of the quintile portfolios’ returns during the period 1980–2015.

Q1 Q2 Q3 Q4 Q5

Ret12 16.34% 9.62% 4.65% 1.27% −3.92%
Ret24 27.28% 15.72% 6.06% 0.24% −6.39%
Ret36 32.58% 15.93% 6.34% −0.82% −7.94%
Ret48 37.10% 17.31% 6.44% −1.67% −6.98%
Ret60 40.49% 17.72% 6.62% −0.78% −7.39%

Table 7

Risk exposure of the quintile portfolios: Fama-French three-factor model

The table shows the results from regressions of the quintile portfolios’ excess returns on the factors in the
Fama-French three-factor model. The quintiles Q1 through Q5 are constructed based on the ranking of
the market-to-value ratio (P/S). The regressor is the excess return of each quintile portfolio. Rm-Rf is the
excess return on the market, SMB (Small Minus Big) is the return on a portfolio of small stocks minus
the return on a portfolio of big stocks, and HML (High Minus Low) is the return on a portfolio of value
stocks minus the return on a portfolio of growth stocks. The sample is composed of the quintile portfolios’
returns during the period 1980–2015. p-Values are in parentheses, computed using Newey-West (1987)
errors with four lags. Row-labeled Joint test: α = 0 shows the p-values of a joint test of the null hypothesis
that all alphas are zero.

Quintile Alpha Rm-Rf SMB HML

Q1 0.010*** −0.019 −0.116*** 0.113**
(0.000) (0.406) (0.001) (0.016)

Q2 0.004*** −0.019 −0.039 0.087**
(0.000) (0.301) (0.205) (0.016)

Q3 0.002** 0.001 −0.021 0.086***
(0.042) (0.935) (0.353) (0.002)

Q4 0.001 −0.006 −0.029 0.066**
(0.491) (0.677) (0.174) (0.011)

Q5 −0.002** −0.002 −0.033 0.085***
(0.032) (0.891) (0.130) (0.001)

Joint test: α = 0 0.000

***, **, * indicate statistical significance at the 0.01, 0.05 and 0.10 level, respectively.

Table 6. Finally, we also reject the null hypothesis that the five alphas are jointly
zero with a p-value of 0. (Note also that the p-values for the individual alphas have
an inverted U-shape across quintiles. This means that the extremal quintiles [i.e., Q1
and Q5] are statistically more different from zero. This is also consistent with our
prediction above.)
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In Appendix B, we extend the previous analyses in two directions. First, we
show that we obtain similar results if we evaluate the risk of the spread strategy
and the five quintiles in the context of the Fama-French three-factor model plus a
momentum factor and the Fama-French five-factor model. Second, we analyze the
impact of demeaning the ratios used in the implementation of the spread strategy.

4. Conclusion

We derive a dynamic version of the DDM in closed form and evaluate its
empirical performance. We find that our model forecasts stock prices consistently in
the sense that model estimates are very close to market prices. In addition, the model
explains a large proportion of the observed variability in current stock prices. We
also find that the observed temporary differences between market prices and model
estimates can be economically exploited. In particular, a spread strategy based on
the ranking of the ratio of stock prices to model forecasts earns positive returns over
the five following years (e.g., an average of around 20%, 34%, 41%, 44%, and 48%
cumulative returns after one, two, three, four, and five years of portfolio formation,
respectively). Finally, we show that those portfolio returns cannot be simply explained
either by the Fama-French three-factor model (even after we add a momentum factor)
or the Fama-French five-factor model.

Appendix A: Proofs

The proof of Proposition 1 requires an intermediate result that we present next.

Lemma 1. The maximum level of book leverage in each period is given by


∗ =
1 +

[
eσ(x ′

c− 1
2 σ)�∗αK−1

1 �
∗αL

2 − f − δ − ω
�∗

2
�∗

1

]
(1 − τ ) − ξ

1 + rB(1 − τ )
. (A1)

Proof. Given the value of x ′
c (i.e., for an arbitrary probability of bankruptcy λ(x ′

c)),
the firm goes into bankruptcy when(

z′
cK

′αK
L′αL − fK′ − δK ′ − ωL′ − rB
K ′) (1 − τ ) + K ′ − 
K ′ − ξK ′ < 0, (A2)

where z′
c = czρeσx ′

c is the cut-off value of z such that the probability of z′ < z′
c is

λ(x ′
c). The maximum book leverage ratio consistent with probability of bankruptcy

λ(x ′
c) then satisfies(
z′
cK

′αK
L′αL −fK′−δK ′−ωL′−rB
∗K ′) (1−τ ) + K ′ − 
∗K ′ − ξK ′ = 0. (A3)

Working on the previous expression (and using the optimal policies derived in
Equation [A15]), the maximum level of book leverage is


∗ =
1 +

[
eσ(x ′

c− 1
2 σ)�∗αK−1

1 �
∗αL

2 − f − δ − ω
�∗

2
�∗

1

]
(1 − τ ) − ξ

1 + rB(1 − τ )
, (A4)
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as shown in Equation (A1). �
Proof of Proposition 1. The market value of equity can be expressed as

S0(K0, L0, B0, z0) = max
{Kt+1,Lt+1,Bt+1}∞t=0

E0

∞∑
t=0

(1 + g)t∏t
j=0(1 + rSj

)
Yt . (A5)

Because we use the APV method of firm valuation, we solve the problem of the
firm in Equation (A5) in three steps. First, we determine the value of the unlevered
firm, Su0 (K0, L0, z0). Second, we solve for optimal debt and compute the present
value of the financing side effects. Finally, we obtain the value of the levered firm in
Equation (A5).

The market value of equity for the unlevered firm can be expressed as

Su0 (K0, L0, z0) = max
{Kt+1,Lt+1}∞t=0

E0

∞∑
t=0

(
1 + g

1 + rA

)t

Yut
. (A6)

where Yut
= Nut

− (Kt+1 − Kt ) and Nut
= (ztK

αK

t L
αL

t − fKt − δKt − ωLt )(1 − τ ).
We let normalized variables with primes indicate values in the next period and nor-
malized variables with no primes denote current values. Then, the Bellman equation
for the problem of the firm in Equation (A6) is given by

Su(K,L, z) = max
K ′,L′

{
(zKαK LαL − fK − δK − ωL) (1 − τ ) − (1 + g)K ′ + K

+ (1 + g)

(1 + rA)
E
[
Su

(
K ′, L′, z′) |z]} . (A7)

We use the guess and verify method as the proof strategy. Thus, we start by
guessing that the solution is given by

Su(K,L, z) = (zKαK LαL − fK − δK − ωL) (1 − τ ) + K + M(z)P ∗
u , (A8)

where

M(z) = e
− 1

2 σ 2 (αK +αL)
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P ∗
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1, (A10)
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�∗
2 =

[(
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1−τ
+ f + δ

)αK (αL

ω
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] 1
1−(αK +αL)

. (A12)

We obtain this initial guess as the solution of Equation (A7) by the backward induction
method.

We now verify our guess. To this end, let us write
Su(K,L, z) = max

K ′,L′
{F (K ′, L′,K,L, z)} (A13)

with F defined as the objective function in Equation (A7).
The First Order Condition (FOC) for this problem is

∂F (K ′, L′,K,L, z)/∂K ′ = −(1 + g)

+ (1 + g)
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[(
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)
(1 − τ ) = 0

(A14)

and optimal capital and labor turn out to be
K∗ = E

[
z′|z] 1

1−(αK +αL) �∗
1 and L∗ = E

[
z′|z] 1

1−(αK +αL) �∗
2, (A15)

where �∗
1 and �∗

2 are as in Equations (A11) and (A12), respectively.
Finally, the market value of equity for the unlevered firm becomes
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u , (A16)

which is equivalent to our initial guess in Equation (A8).
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Next, we obtain optimal risky debt. We first re-express debt as fraction of capital:
B = 
K . In each period, the firm solves the following problem:

max

′,x ′

c

{

′K ′ − 1

(1 + rB)

{

′K ′ [1 + rB(1 − τ )] − λ(x ′

c)ξK
′}}

. (A17)

where x ′
c is the cut-off value of the standard normal random variable x such that the

probability of x ′ < x ′
c is λ(x ′

c).
The above problem can be solved in two steps. In the first step, given the value

of x ′
c (i.e., for an arbitrary probability of bankruptcy λ(x ′

c)), the firm chooses optimal
book leverage 
∗. Defining F as the objective function in Equation (A17), the FOC
turns out to be ∂F (K ′, 
′, x ′

c)/∂
′ = 1
(1+rB ) rBτK ′ > 0. Because rB > 0, τ > 0, and

K ′ > 0 the firm increases debt as much as possible to maximize the tax benefits of
debt. Then, optimal debt is B∗ = 
∗K∗ where
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as shown in Lemma 1. In the second step, the firm selects the value of x ′
c that

maximizes the present value of the financing side effects. Accordingly, the problem
of the firm becomes

max
x ′

c

{

∗ (x ′

c

)
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After solving the previous problem, the optimal probability of bankruptcy is
given by

λ∗ =
∫ x∗

c

−∞

1√
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2 dz, (A20)

where
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Finally, the present value of the financing side effects turns out to be

Q(z) =
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1 + rA

){(
1 + rA

1 + rB

) (
rBτ
∗ − λ∗ξ

)
K∗ + E

[
Q (z′)|z]}

= M(z)

(
1 + rA

1 + rB

) (
rBτ
∗ − λ∗ξ

)
�∗

1, (A22)

where M(z) is as in Equation (A9). Under this financial policy, the amount of debt
and interest payments will vary with the future asset cash flows (i.e., they depend on
future firm performance). Then, because the financing side effects will have a level
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of risk in line with that of the firm cash flows, we use the cost of capital, rA, as the
discount rate. This feature of the model is consistent with Kaplan and Ruback (1995).

The third step consists in obtaining the market value of equity for the levered
firm that does not go into bankruptcy. If we assume the firm used debt B in the
previous period, and now has to pay interest rBB(1 − τ ), then the stock price for the
levered firm is

S(K,L,B, z) = Su(K,L, z)+M(z)

(
1+rA

1+rB

) (
rBτ
∗−λ∗ξ

)
�∗
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where G(z) = M(z)P ∗ and variable P ∗ takes the form
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Finally, the optimal decisions of the firm are given by
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t+1 = (1 + g)E [zt+1|zt ]

1
1−(αK +αL) �∗

1,

L∗
t+1 = (1 + g)E [zt+1|zt ]

1
1−(αK +αL) �∗

2, and B∗
t+1 = 
∗K∗

t+1 (A25)

and the market value of equity is
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as shown in Proposition 1. �
Lemma 2. Suppose g < rA and ρ < 1. Then M(zt ) converges for each given zt .
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The first factor, e
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[1−(αK +αL)]2 , is a positive constant. In addition, E[z1/[1−(αK+αL)]
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converges if 1+g

1+rA
< 1—which is the same as to say g < rA . �
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Appendix B: Robustness checks

In this Appendix, we perform further analyses to ascertain the robustness of
our results in Subsection 3.3. First, we study the returns of the Q1–Q5 spread strat-
egy and the five quintiles in the context of the Fama-French three-factor model
plus a momentum factor and the Fama-French five-factor model. Second, we ascer-
tain the importance of the demeaning of the ratios used to implement the spread
strategy.

We test the performance of the spread strategy based on P/S against the Fama-
French three-factor model plus a momentum factor. The latter, denoted as MOM,
is given by the return on a portfolio of firms with high prior year return minus
the return on a portfolio of firms with low prior year return. This factor attempts
to explain the observed positive relation between prior year return and current
year return (Jegadeesh and Titman, 1993). Accordingly, we perform the following
regression:

Rst − Rft
= α + β1(RMt

− Rft
) + β2SMBt + β3HMLt + β4MOMt + εst, (B1)

where we regress the excess (monthly) returns of the Q1–Q5 spread strategy portfolios
on the four factors. We let s indicate the specific portfolio from 1 to 35, t denote
the month of the return, and εst be an iid random term. We show the results from
this regression in the second row in Table 5. The alpha, with a value of 0.011, is
statistically significantly different from zero (p-value = 0), implying that the spread
strategy yields significantly positive returns that cannot be explained by the Fama-
French three-factor model plus momentum.

Next, we reproduce the previous analysis in the context of the Fama-French
five-factor model. The latter extends the Fama-French three-factor model by adding
two more factors: RMW and CMA. Factor RMW (Robust Minus Weak) represents
the return on a portfolio of firms with robust (i.e., high) operating profitability mi-
nus the return on a portfolio of firms with weak (i.e., low) operating profitability.
Fama and French (2015) suggests this variable might explain the expected positive
relation between operating profitability and average return. Factor CMA (Conserva-
tive Minus Aggressive) is the return on a portfolio of firms with conservative (i.e.,
low) investment minus the return on a portfolio of firms with aggressive (i.e., high)
investment. According to Fama and French (2015), this variable might explain the
expected negative relation between investment and average return. Thus, we perform
the next regression

Rst − Rft
= α + β1(RMt

− Rft
) + β2SMBt + β3HMLt + β4RMW t

+ β5CMAt + εst, (B2)

where we regress the excess (monthly) returns of the Q1–Q5 spread strategy portfolios
on the five factors. As before, s indexes the specific portfolio from 1 to 35, t indicates
the month of the return, and εst is an iid random term. The third row in Table 5
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Table B1

Risk exposure of the quintile portfolios: Fama-French three-factor model plus momentum

The table shows the results from regressions of the quintile portfolios’ excess returns on the factors in
the Fama-French three-factor model plus momentum. The quintiles Q1 through Q5 are constructed based
on the ranking of the market-to-value ratio (P/S). The regressor is the excess return of each quintile
portfolio. Rm-Rf is the excess return on the market, SMB (Small Minus Big) is the return on a portfolio
of small stocks minus the return on a portfolio of big stocks, HML (High Minus Low) is the return on
a portfolio of value stocks minus the return on a portfolio of growth stocks, and MOM (Momentum) is
the return on a portfolio of firms with high prior year return minus the return on a portfolio of firms
with low prior year return. The sample is composed of the quintile portfolios’ returns during the period
1980–2015. p-Values are in parentheses, computed using Newey-West (1987) errors with four lags. Row-
labeled Joint test: α = 0 shows the p-values of a joint test of the null hypothesis that all alphas are
zero.

Quintile Alpha Rm-Rf SMB HML MOM

Q1 0.011*** −0.020 −0.119*** 0.101** −0.042
(0.000) (0.370) (0.001) (0.016) (0.170)

Q2 0.004*** −0.020 −0.040 0.082** −0.018
(0.000) (0.285) (0.194) (0.025) (0.389)

Q3 0.002** 0.000 −0.022 0.080** −0.022
(0.023) (0.985) (0.320) (0.014) (0.206)

Q4 0.001 −0.007 −0.029 0.062** −0.013
(0.390) (0.650) (0.163) (0.018) (0.353)

Q5 −0.002* −0.003 −0.034 0.079*** −0.020
(0.059) (0.847) (0.119) (0.002) (0.243)

Joint test: α = 0 0.000

***, **, * indicate statistical significance at the 0.01, 0.05 and 0.10 level, respectively.

shows the results from this analysis. Likewise Equation (B1), the alpha is statistically
significantly different from zero, with a value of 0.012 and a p-value of 0.

Overall, the previous results suggest that the spread strategy based on P/S yields
significantly positive returns that cannot be accounted for by exposure to the factors in
the Fama-French three-factor model plus momentum or the Fama-French five-factor
model.

We also analyze the returns of the quintile portfolios in the context of the Fama-
French three-factor model plus momentum and the Fama-French five-factor model.
As Table B1 shows, adding momentum to the Fama-French three-factor model yields
almost identical results to those of Table 7 in the sense that the alphas exhibit a
diminishing pattern across quintiles (from α = 0.011 for Q1 to α = −0.002 for Q5)
and their statistical significance increases for the extremal quintiles (i.e., Q1 and Q5).
In addition, with a p-value of 0, we strongly reject the null hypothesis that the five
alphas are jointly zero.

The results regarding the returns of the quintile portfolios and the Fama French
five-factor model are shown in Table B2 and the main conclusions are roughly
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Table B2

Risk exposure of the quintile portfolios: Fama-French five-factor model

The table shows the results from regressions of the quintile portfolios’ excess returns on the factors in the
Fama-French five-factor model. The quintiles Q1 through Q5 are constructed based on the ranking of the
market-to-value ratio (P/S). The regressor is the excess return of each quintile portfolio. Rm-Rf is the excess
return on the market, SMB (Small Minus Big) is the return on a portfolio of small stocks minus the return
on a portfolio of big stocks, HML (High Minus Low) is the return on a portfolio of value stocks minus the
return on a portfolio of growth stocks, RMW (Robust Minus Weak) is the return on a portfolio of firms
with high operating profitability minus the return on a portfolio of firms with low operating profitability,
and CMA (Conservative Minus Aggressive) is the return on a portfolio of firms with low investment minus
the return on a portfolio of firms with high investment. The sample is composed of the quintile portfolios’
returns during the period 1980–2015. p-Values are in parentheses, computed using Newey-West (1987)
errors with four lags. Row-labeled Joint test: α = 0 shows the p-values of a joint test of the null hypothesis
that all alphas are zero.

Quintile Alpha Rm-Rf SMB HML RMW CMA

Q1 0.011*** −0.020 −0.171*** 0.088 −0.262*** −0.001
(0.000) (0.386) (0.000) (0.143) (0.000) (0.993)

Q2 0.005*** −0.013 −0.096*** 0.022 −0.276*** 0.080
(0.000) (0.492) (0.007) (0.688) (0.000) (0.268)

Q3 0.002*** 0.009 −0.060** 0.022 −0.192*** 0.092
(0.009) (0.587) (0.010) (0.555) (0.000) (0.130)

Q4 0.001 −0.002 −0.059** 0.027 −0.146*** 0.051
(0.264) (0.883) (0.018) (0.446) (0.000) (0.318)

Q5 −0.001* −0.000 −0.066** 0.054 −0.158*** 0.033
(0.094) (0.996) (0.013) (0.165) (0.000) (0.580)

Joint test: α = 0 0.000

***, **, * indicate statistical significance at the 0.01, 0.05 and 0.10 level, respectively.

equal to those we just described for the Fama-French three-factor model plus
momentum.

Finally, we evaluate the impact of the demeaning step in the Q1–Q5 spread
strategy implementation by comparing the results in Table 4 with those of the same
strategy without demeaning. In other words, we repeat the same exercise without
demeaning each of the four ratios. Consistently with our previous results, Table B3
shows that the returns of the spread strategy using the P/S ratio are positive (37.07%
return after 60 months) and outperform those of the strategies based on the P/B, P/E
and P/D ratios (30.71%, 22.84%, and 4.49% returns after 60 months, respectively).
More importantly, by comparing the results in Table B3 with those in Table 4, we
find that the strategy returns of the four ratios are higher with the demeaning step.
In other words, our results suggest that the demeaning step plays an important role
in the implementation of the spread strategies. We believe this finding might result
particularly useful for practitioners.
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Table B3

Cumulative Q1–Q5 spread strategy returns with no demeaning

The table presents the average cumulative returns of four strategies. The strategies are based on the ratios:
the market-to-value ratio (P/S), the market-to-book ratio (P/B), the price-earnings ratio (P/E), and the
price-dividend ratio (P/D). Each strategy ranks firms based on their corresponding ratios and groups them
in quintiles. The spread strategy (Q1–Q5) consists in buying firms in the bottom quintile (Q1) and selling
firms in the top quintile (Q5). P/S portfolios refers to the strategy based on the P/S ratio; P/B portfolios
refers to the strategy based on the P/B ratio; P/E portfolios refers to the strategy based on P/E ratio;
and P/D portfolios refers to the strategy based on the P/D ratio. Rows Ret12, Ret24, Ret36, Ret48, and
Ret60 show 12-, 24-, 36-, 48-, and 60-month magnitudes, respectively. Column Q1–Q5 shows average
cumulative returns. Column SE shows annualized standard errors. Column Sharpe ratio shows annualized
Sharpe ratios. Column % Winners shows the percentage of winning periods.

Q1–Q5 SE Sharpe ratio % Winners

Panel A: P/S portfolios

Ret12 15.23%*** 0.12 1.15 96.15%
Ret24 24.50%*** 0.22 1.08 96.15%
Ret36 30.93%*** 0.21 1.43 100.00%
Ret48 34.03%*** 0.26 1.28 100.00%
Ret60 37.07%*** 0.31 1.15 100.00%

Panel B: P/B portfolios

Ret12 11.78%*** 0.22 0.49 76.79%
Ret24 18.76%*** 0.27 0.66 76.79%
Ret36 24.73%*** 0.29 0.82 85.71%
Ret48 28.06%*** 0.37 0.72 83.93%
Ret60 30.71%*** 0.48 0.62 80.36%

Panel C: P/E portfolios

Ret12 7.72%** 0.21 0.32 76.79%
Ret24 11.64%*** 0.28 0.38 75.00%
Ret36 16.56%*** 0.31 0.49 71.43%
Ret48 18.93%*** 0.43 0.42 73.21%
Ret60 22.84%*** 0.51 0.43 71.43%

Panel D: P/D portfolios

Ret12 4.45% 0.20 0.17 64.29%
Ret24 7.20%** 0.25 0.25 71.43%
Ret36 4.88% 0.28 0.14 66.07%
Ret48 5.25% 0.28 0.15 64.29%
Ret60 4.49% 0.31 0.11 60.71%

***, **, * indicate statistical significance at the 0.01, 0.05 and 0.10 level, respectively.
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