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Note 9: Parametric Optimization - Envelope Theorem and Comparative Statics

Note 9 is based on de la Fuente (2000, Ch. 7), Madden (1986, Ch. 8) and Simon and Blume

(1994, Ch. 19).

Parameterized Optimization in Economics

Most of the economic analysis considers whole families of optimization problems instead of just

one in isolation. Let us consider a simple model of one-choice variable and a single parameter

maxx
{

lnx : x2 − α ≤ 0
}

(1)

where α ∈ R++ and x ∈ R++. For any specification of α, this is a standard nonlinear program-

ming problem. In particular, since the constraint set entails an inequality it is a Kuhn-Tucker

problem. Problem (1) differs from the ones in Note 8 in that now both the maximizer x∗ and the

maximum value of the objective function f (x∗) = lnx∗ will depend on the value of α. For this

parametrized family of optimization problems two questions are of fundamental relevance: How

does the maximum value of the objective function depend on α?; and How does the maximizer

depend on α? We start answering them for problem (1), and then extend the idea to more general

cases.

For any α ∈ R++ and x ∈ R++ all the points in the feasible (or constraint) set satisfy the

NDCQ. The Lagrangian function is

L (x, λ;α) = lnx− λ
(
x2 − α

)
where we separate the variables of choice x and λ from the parameter α by a semi-colon. Since

f is C1 and nonstationary (see Corollary 3 in Note 8) the necessary first order conditions are

∂L (x, λ;α)

∂x
=

1

x
− 2λx = 0

x2 − α = 0

λ > 0.
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Then x∗ = +
√
α, λ∗ = 1/2α and f (x∗) = (1/2) lnα. As we anticipated, all these functions

depend on α. Moreover, ∂x∗ (α) /∂α = (1/2)α−1/2 > 0 and ∂f [x∗ (α)] /∂α = (1/2)α−1 > 0

for α ∈ R++. This is the kind of statements economists care about. We next provide a general

framework to address these issues.

Let x = (x1, x2, ..., xn) be the choice variables and α = (α1, α2, ..., αl) be a vector of all

parameters appearing in our model. We will allow both objective and constraint functions to

depend on α and will write the values of these functions as f (x;α) and U (α) respectively. The

parameters must belong to some set Ω that we name the admissible parameter set.

We consider the general family of problems

maxx {f (x;α) : x ∈ U (α)} (F.P)

where α ∈ Ω ⊆ Rl and x ∈ X ⊆ Rn. We assume both Ω and X are open sets.

The set of maximizers is described by the decision rule

S (α) = arg max {f (x;α) : x ∈ U (α)} .

That is, S (α) is the set of elements x∗ that are the optimal solutions to problem (F.P) for a given

α ∈ Ω. If the solution to (F.P) is unique for each value of α, then the decision rule becomes a

function, and we write x∗ = x∗ (α) .

The payoff accruing to an optimizing agent is given by the (maximum) value function, V :

Ω→ R, defined by

V (α) = maxx {f (x;α) : x ∈ U (α)} = f (x∗;α) , where x∗ ∈ S (α) .

As we noticed before, in most economic applications we are interested in asserting how the

maximum value function is affected by changes in the parameters, and in the comparative statics

of the decision rule S (α) . That is, we would like to know how the maximum payoff and the

behavior of the agent varies in response to changes in his environment (e.g. the prices he faces,

the income, etc.). The next section answers the first question, and the last one focuses on the

second question.
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The Envelope Theorems

This section considers three versions of problem (F.P), that differ with respect to the constraint

set, and discusses the corresponding theorems that study the effects of changing α on the maxi-

mum value function V (α). Such theorems are called Envelope Theorems.

We start with the Envelope Theorem for unconstrained optimization problems.

Theorem 1. (Envelope Theorem for unconstrained optimization) Consider problem

(F.P) with U (α) = Rn, and assume f (x;α) is a C1 function. Let x∗ (α) be a solution to this

problem. Suppose x∗ (α) is a C1 function of α. Then

∂V (α)

∂αi
=

∂f

∂αi
[x∗ (α) ;α]

for i = 1, ..., l.

Proof. Via the Chain rule

∂V (α)

∂αi
=

∑n

j=1

∂f

∂xj
[x∗ (α) ;α]

∂x∗j
∂αi

(α) +
∂f

∂αi
[x∗ (α) ;α]

=
∂f

∂αi
[x∗ (α) ;α]

since ∂f/∂xj [x∗ (α) ;α] = 0 for j = 1, 2, ..., n by the usual first order conditions.

In problem (F.P) each parameter αi affects the maximum value function in two ways. In a

direct way, αi affects V (α) because it is part of the objective function f (x;α) . Indirectly, αi

affects V (α) through its effect on the variables of choice x∗ (α) . The Envelop Theorem states

that to assert ∂V/∂αi we only need to consider the direct effect of αi on f (x;α) , ∂f/∂αi, and

evaluate this partial derivative at the optimal x∗ (α)!

The next example applies this theorem to a standard firm problem.

Example 1. A competitive firm sells its product at a unit price p = αp, where α > 0 is a positive

parameter that captures the strength of demand. Assume the cost of producing y units is C(y),

with C(0) = 0 C ′(y) > 0 and C ′′(y) > 0. The firm profit function is

π (α) = maxy {αpy − C(y)} .
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The conditions on the cost function guarantee that there is a nonzero profit-maximizing output

y∗ (α) which depends smoothly on α. By the Envelope Theorem for unconstrained optimization

problems we get
∂π (α)

∂α
= py∗ (α) > 0.

As expected, the firm makes more profits when the demand is stronger. N

Let us extend the analysis to constrained optimization problems. We start with the Lagrange

problem, and end the analysis with the problem of Kuhn-Tucker.

Theorem 2. (Envelope Theorem for the Lagrange problem) Consider problem (F.P)

with U (α) = {x ∈ Rn : h1 (x;α) = 0, ..., hm (x;α) = 0}, and assume f (x;α) is a C1 function.

Let x∗ (α) be a solution to this problem. Suppose x∗ (α) and the Lagrange multipliers µ∗ (α)

are C1 functions of α and that the NDCQ holds. Then

∂V (α)

∂αi
=
∂L

∂αi
[x∗ (α) ,µ∗ (α) ;α]

for i = 1, ..., l, where L is the natural Lagrangian function for this problem.

Proof. Form the Lagrangian for the maximization problem

L (x,µ;α) = f (x;α)−
∑m

t=1
µtht (x;α) . (2)

From the first order conditions we know that

∂f

∂xj
[x∗ (α) ;α]−

∑m

t=1
µ∗t (α)

∂ht
∂xj

[x∗ (α) ;α] = 0 for j = 1, ..., n (3)

ht [x∗ (α) ;α] = 0 for t = 1, ...,m. (4)

The partial derivative of the Lagrangian with respect to αi at [x∗ (α) ,µ∗ (α) ;α] is

∂L

∂αi
[x∗ (α) ,µ∗ (α) ;α] =

∂f

∂αi
[x∗ (α) ;α]−

∑m

t=1
µ∗t (α)

∂ht
∂αi

[x∗ (α) ;α] . (5)

We need to show that the derivative of the maximum value function with respect to αi is equal

to the last expression.

Let us then differentiate V (α) with respect to αi

∂V (α)

∂αi
=
∑n

j=1

∂f

∂xj
[x∗ (α) ;α]

∂x∗j
∂αi

(α) +
∂f

∂αi
[x∗ (α) ;α] . (6)
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Next go back to the first order conditions and rearrange terms

∂f

∂xj
[x∗ (α) ;α] =

∑m

t=1
µ∗t (α)

∂ht
∂xj

[x∗ (α) ;α] for j = 1, ..., n. (7)

Substituting (7) in (6) and rearranging terms we get

∂V (α)

∂αi
=
∑m

t=1
µ∗t (α)

∑n

j=1

∂ht
∂xj

[x∗ (α) ;α]
∂x∗j
∂αi

(α) +
∂f

∂αi
[x∗ (α) ;α] . (8)

The last trick is to go back to the first order conditions and differentiate (4) with respect to αi∑n

j=1

∂ht
∂xj

[x∗ (α) ;α]
∂x∗j
∂αi

(α) +
∂ht
∂αi

[x∗ (α) ;α] = 0 for t = 1, ...,m. (9)

Substituting (9) in (8) we get

∂V (α)

∂αi
= −

∑m

t=1
µ∗t (α)

∂ht
∂αi

[x∗ (α) ;α] +
∂f

∂αi
[x∗ (α) ;α] .

which is identical to expression (5).

The last theorem is extremely important in economics. It allows, for instance, to provide a

nice interpretation of the Lagrange multipliers.

Example 2. Consider a simple version of the Lagrange problem

maxx {f (x) : x ∈ U} (10)

where U = {x ∈ Rn : h (x) = 0} . Now suppose that we perturb the constraint by an amount

α ∈ Ω ⊂ R (with 0 ∈ Ω) as follows

maxx {f (x) : h (x) = α} (11)

Notice that (11) reduces to (10) when α = 0. Assume the conditions of the Envelope Theorem

hold. The Lagrangian is given by

L (x;α) = f (x)− µ [h (x)− α] .

Therefore,
∂V (α)

∂α
= µ∗ (α) .
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Then µ∗ (α) measures the change in the optimal value function with respect to the parameter α.

That is, how much the maximum value function increases if we relax the constraint in one single

unit. N

Theorem 3. (Envelope Theorem for the Kuhn-Tucker problem) Consider problem (F.P)

with U (α) = {x ∈ X : g1 (x;α) ≤ 0, ..., gk (x;α) ≤ 0} , and assume f (x;α) is a C1 function. Let

x∗ (α) be a solution to this problem. Suppose x∗ (α) and the multipliers λ∗ (α) are C1 functions

of α and that the NDCQ holds. Then

∂V (α)

∂αi
=
∂L

∂αi
[x∗ (α) ,λ∗ (α) ;α]

for i = 1, ..., l, where L is the natural Lagrangian function for this problem.

Proof. (Prove this result.)

The next two examples end this section.

Example 3. Consider the problem

maxx∈R2++

{
x
1/2
1 x

1/2
2 : α1x1 + α2x2 − α3 ≤ 0

}
where α ∈ R3++. (Find the solution function, multiplier function and maximum value

function. Differentiate these expressions with respect to the three parameters, and

compare these results with the claim of the Envelope Theorem for the Kuhn-Tucker

problem.) N

Example 4. (Roy’s Identity) Suppose the conditions of Theorem 3 hold in the problem

max
x

{
U (x) :

∑n

i=1
pixi ≤ m

}
where (p,m) ∈ Rn+1++ and x ∈ Rn++. Let U (x) be strictly increasing. [Use the last Envelope

Theorem to prove that x∗i (p,m) = −∂V/∂pi
∂V/∂m for i = 1, ..., n.] N
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Smooth Dependence of the Maximizers on α

All the results in the previous section relied on a basic hypothesis: the smooth dependence of the

maximizers on the parameters of the problem. In this section we look at this hypothesis more

carefully.

Let us consider first the unconstrained problem of Theorem 1

maxx {f (x;α) : x ∈ Rn} (12)

where α ∈ Ω ⊆ Rl and Ω is an open set. Let f be a C2 function. Since we are assuming that a

maximizer x∗ (α) exists, then x∗ (α) is a solution to the typical first-order conditions

∂f

∂x1
(x;α) = 0

... =
...

∂f

∂xn
(x;α) = 0.

By the IFT, we can solve these n equations for the n unknowns x1, ..., xn as C1 functions of

the exogenous parameters α, provided that the Jacobian of these functions with respect to the

endogenous variables x1, ..., xn is non-singular at [x∗ (α) ;α] . But the Jacobian of the first-order

partial derivatives ∂f/∂xi is simply the Hessian of f at [x∗ (α) ;α]

D2f [x∗ (α) ;α] =



∂2f
∂x21

∂2f
∂x2∂x1

· · · ∂2f
∂xn∂x1

∂2f
∂x1∂x2

∂2f
∂x22

· · · ∂2f
∂xn∂x2

...
...

. . .
...

∂2f
∂x1∂xn

∂2f
∂x2∂xn

· · · ∂2f
∂x2n


. (13)

The Hessian matrix evaluated at [x∗ (α) ;α] is generally non-singular. Moreover, since (12) is

a maximization problem, its determinant has the same sign as (−1)n by the usual second order

suffi cient conditions.

This means that we can replace the hypothesis that x∗ (α) is a C1 function of αi in Theorem 1,

by the hypothesis that x∗ (α) is a non-degenerate critical point of f in the sense that the Hessian

matrix (13) of f is non-singular at [x∗ (α) ;α] . The next theorem captures this observation.

Theorem 4. (Smoothness of x∗ (α) on α in the unconstrained problem) Consider

problem (F.P) with U (α) = Rn. Let x∗ (α) be the solution of the parametrized maximization
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problem. Fix the value of the parameters at α = α0. If the Hessian matrix (13) is non-singular

at the point
[
x∗
(
α0
)

;α0
]
, then x∗ (α) is a C1 function of α at α = α0.

A similar analysis works for constrained problems. Consider the parametrized constrained

maximization problem of Theorem 2

maxx {f (x;α) : x ∈ U (α)}

where U (α) = {x ∈ Rn : h1 (x;α) = 0, ..., hm (x;α) = 0}, α ∈ Ω ⊆ Rl and we assume that Ω is

an open set. Let f be a C2 function. Assume the NDCQ holds at [x∗ (α) ;α] , that is

rank


∂h1
∂x1

[x∗ (α) ;α] · · · ∂h1
∂xn

[x∗ (α) ;α]
...

. . .
...

∂hm
∂x1

[x∗ (α) ;α] · · · ∂hm
∂xn

[x∗ (α) ;α]

 = m. (14)

Let us write the corresponding Lagrangian function

L (x,µ;α) = f (x;α)− µ1h1 (x;α)− ...− µmhm (x;α) .

The constrained maximizer x∗ (α) must satisfy the first order conditions

∂L

∂x1
(x,µ;α) = 0, ...,

∂L

∂xn
(x,µ;α) = 0

∂L

∂µ1
(x,µ;α) = 0, ...,

∂L

∂µm
(x,µ;α) = 0.

This is a system of n+m equations in n+m unknowns x1, ..., xn, µ1, ..., µm. Once again, we call

on the IFT to provide conditions that guarantee that x∗ (α) and µ∗ (α) will depend smoothly

on the exogenous parameter αi; the Jacobian of these equations with respect to the endogenous

variables must be an (n+m)×(n+m) non-singular matrix at [x∗ (α) ,µ∗ (α) ;α] . This Jacobian

is simply the Hessian of the Lagrangian

D2L [x∗ (α) ,µ∗ (α) ;α] =



∂2L
∂x21

· · · ∂2L
∂xn∂x1

∂2L
∂µ1∂x1

· · · ∂2L
∂µm∂x1

...
. . .

...
...

. . .
...

∂2L
∂x1∂xn

... ∂2L
∂x2n

∂2L
∂µ1∂xn

· · · ∂2L
∂µm∂xn

∂2L
∂x1∂µ1

· · · ∂2L
∂xn∂µ1

∂2L
∂µ21

· · · ∂2L
∂µm∂µ1

...
. . .

...
...

. . .
...

∂2L
∂x1∂µm

· · · ∂2L
∂xn∂µm

∂2L
∂µ1∂µm

· · · ∂2L
∂µ2m


(15)
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evaluated at [x∗ (α) ,µ∗ (α) ;α] .

This is the matrix that we used before to check the second order suffi cient conditions for a

constrained maximum. The Hessian usually has non-zero determinant at [x∗ (α) , λ∗ (α) ;α]. In

fact, for a non-degenerate constrained maximization problem, its determinant has the same sign

as (−1)n . As a consequence, we can replace the conditions of Theorem 2 that x∗ (α) and µ∗ (α)

are C1 functions of the parameter αi and the requirement of the NDCQ by the non-degenerate

second order condition for constrained problems, namely that the Hessian of the Lagrangian has

a nonzero determinant at [x∗ (α) ,µ∗ (α) ;α] . (It can be shown that the NDCQ is a necessary

condition for the latter to hold.)

Theorem 5. (Smoothness of x∗ (α) and µ∗ (α) on α in the Lagrange problem) Consider

problem (F.P) with U (α) = {x ∈ Rn : h1 (x;α) = 0, ..., hm (x;α) = 0} . Let x∗ (α) be the solu-

tion of the parametrized maximization problem, and let µ∗ (α) be the corresponding Lagrange

multipliers. Fix the value of the parameters at α = α0. If the Hessian matrix is non-singular at

the point
[
x∗
(
α0
)
,µ∗

(
α0
)

;α0
]
, then

(a) x∗ (α) and µ∗ (α) are C1 functions of α at α = α0; and

(b) the NDCQ holds at
[
x∗
(
α0
)
,µ∗

(
α0
)

;α0
]
.

Remark 1. The extension of the previous result to the K-T problem follows immediately.

We next extend Example 4 in Note 3.

Example 5. (Comparative Statics) Let us consider a firm that produces a good y by using

a single input x. The firm sells the output and acquires the input in competitive markets. The

market price of y is p, and the cost of each unit of x is just w. Its technology is given by

f : R+ → R+, where f is a C2 function with f ′ > 0 and f ′′ < 0. Its profits are given by

π̃ (x; p, w) = pf (x)− wx. (16)

The firm selects the input level, x, in order to maximize profits. We would like to know how its

choice of x is affected by a change in w.
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Assuming an interior solution, the first-order condition of this optimization problem is

∂π̃

∂x
(x; p, w) = pf ′ (x)− w = 0 (17)

for some x = x∗. We know that if such x∗ exists, it is a global maximum and it is unique.

(Why?)

Notice that here
∂2π̃

∂x2
(x∗; p, w) = pf ′′ (x∗) < 0. (18)

So the conditions of Theorem 4 are satisfied. It follows that if there is an x∗ = x (p, w) that

satisfies (16) it is differentiable. Moreover, by the IFT we get

∂x

∂p
(p, w) = − f ′ (x∗)

pf ′′ (x∗)
> 0 and

∂x

∂w
(p, w) = − −1

pf ′′ (x∗)
< 0. (19)

We conclude that if the price of the output increases, then the firm will acquire more of the input;

and the opposite holds if the price of the input increases. N
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