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Note 8: Nonlinear Programming - The Kuhn-Tucker Problem

Note 8 is based on de la Fuente (2000, Ch. 7) and Simon and Blume (1994, Ch. 18 and 19).

The Kuhn-Tucker Problem

Let f : Rn → R, and consider the problem

maxx {f (x) : x ∈ U} (P.K-T)

where

U = {x ∈ Rn : g1 (x) ≤ b1, ..., gk (x) ≤ bk} .

We assume k ≤ n, that is, the number of constraints is at most equal to the number of decision

variables. As you can notice, the only difference from the Lagrange problem is that the constraints

are now written as weak inequalities, rather than equalities.1

Let us start again with a simple case of two variables of choice and one constraint

maxx1,x2 {f (x1, x2) : g (x1, x2) ≤ b} . (1)

In Figure 1 the thicker curves are the points that satisfy g (x1, x2) = b, and the region to the left

and below these curves is the constraint set g (x1, x2) ≤ b. The thinner lines are the level sets of

the objective function f .

In the left panel, the highest level curve that meets the constraint set meets it at the point

(x∗1, x
∗
2) . Since this point satisfies g (x

∗
1, x
∗
2) = b, we say that the constraint is binding. At (x∗1, x

∗
2)

the level sets of f and g are tangent. Therefore, as in the Lagrange problem, their slopes satisfy,

for some λ,

Df (x∗1, x
∗
2)− λDg (x∗1, x∗2) = (0, 0). (2)

However, this time the sign of the multiplier is important! Recall that Df (x∗1, x
∗
2) points in the

direction in which f increases most rapidly at (x∗1, x
∗
2). In particular, Dg (x

∗
1, x
∗
2) points to the set

1All the results in this note remain valid if f : X → R where X is an open set in Rn.
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g (x1, x2) ≥ b not to the set g (x1, x2) ≤ b. Since (x∗1, x
∗
2) maximizes f on the set g (x1, x2) ≤ b,

the gradient of f cannot point to the constraint set. If it did, we could increase f and still satisfy

g (x1, x2) ≤ b. This means that at a maximum like (x∗1, x
∗
2), Df (x

∗
1, x
∗
2) and Dg (x

∗
1, x
∗
2) must

point in the same direction, i.e. λ must be positive.

It follows that for this first case we still form the Lagrangian function

L (x1, x2, λ) = f (x1, x2)− λ [g (x1, x2)− b] (3)

and set
∂L

∂x1
=

∂f

∂x1
− λ ∂g

∂x1
= 0 and

∂L

∂x2
=

∂f

∂x2
− λ ∂g

∂x2
= 0. (4)

Here we also require the constraint qualification that the maximizer not be a critical point of the

constraint function g. Before considering ∂L/∂λ we need to think about the situation in the right

panel of Figure 1.

Suppose that the maximum of f on the constraint set g (x1, x2) ≤ b occurs at a point (x∗∗1 , x∗∗2 )

where g (x∗∗1 , x
∗∗
2 ) < b. In this case we say the constraint is not binding. Since the constraint is

not effective, then (x∗∗1 , x
∗∗
2 ) must be an optimal point of the unconstrained problem. Hence, from

Note 6, we know that
∂f

∂x1
= 0 and

∂f

∂x2
= 0 (5)

at (x∗∗1 , x
∗∗
2 ) . Notice that we can still use the Lagrangian function (3) and set ∂L/x1 and ∂L/x2

equal zero provided that λ equals zero too.

In summary, either the constraint is binding, that is, g (x1, x2)− b = 0, as in the left panel of

Figure 1, in which case the multiplier λ must be ≥ 0, or the constraint is not binding as in the

right panel of Figure 1, in which case the multiplier λ must be 0. Such a condition in which one

of two inequalities must be binding is called a complementary slackness condition. The criterion

that either g (x1, x2)− b = 0 or λ = 0 holds can be stated as

λ [g (x1, x2)− b] = 0. (6)
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Figure 1. Graphical Representation of the Kuhn-Tucker Problem

All these observations are captured by the next theorem.

Theorem 1. (Kuhn-Tucker conditions for n = 2 and k = 1) Let f and g be C1 functions.

Suppose that (x∗1, x
∗
2) is a (local) maximum of f on the constraint set

{
(x1, x2) ∈ R2 : g (x1, x2) ≤ b

}
.

If g (x∗1, x
∗
2) = b, suppose that

∂g

∂x1
(x∗1, x

∗
2) 6= 0 or

∂g

∂x2
(x∗1, x

∗
2) 6= 0.

Then, there exists a multiplier λ∗ such that the conditions below hold.

Marginal Conditions Complementary Slackness Conditions

Df (x∗1, x
∗
2)− λ∗Dg (x∗1, x∗2) = (0, 0)

λ∗ ≥ 0 λ∗ [g (x∗1, x
∗
2)− b] = 0

Necessary and Suffi cient Conditions for Local Maxima

The generalization of Theorem 1 to more variables of choice and several inequality constraints is

quite simple. Let us first motivate the first-order conditions.

An inequality constraint, gi (x) ≤ bi, is binding or active at a feasible point x′ if it holds with

equality [gi (x′) = bi], and not binding or inactive if it holds with strict inequality [gi (x′) < bi].

Intuitively, it is clear that only binding inequalities matter and that the others have no effect on

the local properties of the maximizer. Hence, if we knew from the beginning which inequalities

were binding at an optimum, then the Kuhn-Tucker problem would reduce to a Lagrange problem

in which we take the active constraints as equalities and ignore the rest.
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A good recipe to remembering the first-order conditions consists in introducing a vector of

multipliers λ1, ..., λk, one for each constraint, and writing the Lagrangian

L (x,λ) ≡ f (x)− λ1 [g1 (x)− b1]− ...− λk [gk (x)− bk] . (7)

Next we proceed as if we wanted to maximize L (x,λ) with respect to x and λ without constraints.

This yields the following first-order conditions

DxL (x
∗,λ∗) = Df (x∗)−

∑k

i=1
λ∗iDgi (x

∗) = (0, ..., 0) (8)

DλiL (x
∗,λ∗) = gi (x

∗)− bi ≤ 0 and gi (x∗)− bi = 0 if λ∗i > 0 for i = 1, ..., k (9)

λ∗i ≥ 0 and λ∗i = 0 if gi (x∗)− bi < 0 for i = 1, ..., k (10)

where the last condition is the complementary slackness condition. There is a very natural

economic interpretation for the latter. Remember the motivation for the Lagrangian function:

instead of directly forcing the agent to respect the constraint, we allowed him to choose the value

of the choice variables freely, but made him pay a fine µ "per unit violation" of the restriction. If

at his optimal choice of x, x∗, he does not violate the restrictions, then we do not need to make

him pay the fee!

The only extra thing we need to consider is the NDCQ. As the next theorem states, the

qualification constraint applies only to the binding constraints and it is identical to the one

introduced for the Lagrange problem.

Theorem 2. (Kuhn-Tucker conditions) Let f, g1, ..., gk be C1 functions. Suppose that x∗ is

a local maximum of f on U. For ease of notation, assume that the first e constraints are binding

at x∗ and that the last k−e constraints are not binding. Suppose the following NDCQ is satisfied

at x∗ : the rank of the Jacobian matrix of the binding constraints

Dge (x) =


∂g1
∂x1

(x) · · · ∂g1
∂xn

(x)
...

. . .
...

∂ge
∂x1

(x) · · · ∂ge
∂xn

(x)


evaluated at x∗ is e, where ge = (g1, ..., ge)

T . In other words, Dge (x∗) has full rank e.

Then, there exist multipliers λ∗1, ..., λ
∗
k such that the conditions below hold.
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Marginal Conditions Complementary Slackness Conditions

(K-T 1) Df (x∗)−
∑k

i=1 λ
∗
iDgi (x

∗) = (0, ..., 0)

(K-T 2) λ∗1 ≥ 0, ..., λ∗k ≥ 0 λ∗1 [g1 (x
∗)− b1] = 0, ..., λ∗k [gk (x∗)− bk] = 0

Proof. The theorem assumes that x∗ maximizes f on the constraint set

U = {x ∈ Rn : g1 (x) ≤ b1, ..., gk (x) ≤ bk} ;

that only ge = (g1, ..., ge) are binding at x∗

g1 (x
∗) = b1, ..., ge (x

∗) = be, ge+1 (x
∗) < be+1, ..., gk (x

∗) < bk;

and that the e× n Jacobian matrix

Dge (x
∗) =


∂g1
∂x1

(x∗) · · · ∂g1
∂xn

(x∗)
...

. . .
...

∂ge
∂x1

(x∗) · · · ∂ge
∂xn

(x∗)

 . (11)

has maximal rank e.

Since the gi’s are continuous functions, there is an open ball B = Br (x
∗) of radius r > 0

about x∗ such that gi (x) < bi for all x ∈ B and for i = e+ 1, ..., n. We will work in the open set

B for the rest of this proof.

Note that x∗ maximizes f in B on the constraint set

g1 (x) = b1, ..., ge (x) = be (12)

as if there were another point x∗∗ in B that satisfied (12) and gave a higher value of f, then this

point would yield a higher value of f on the original constraint set U and this would contradict

the definition of x∗. Moreover, by (11), x∗ satisfies the NDCQ for the problem of maximizing f

on the constraint set (12). Therefore, by Theorem 1 in Note 7, there exist µ∗1, ..., µ
∗
e such that

∂L̂

∂x1
(x∗,µ∗) = 0, ...,

∂L̂

∂xn
(x∗,µ∗) = 0 (13)

g1 (x) = b1, ..., ge (x) = be

where L̂ ≡ f (x)− µ1 [g1 (x)− b1]− ...− µe [ge (x)− be] .
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Now consider the original Lagrangian function

L (x,λ) ≡ f (x)− λ1 [g1 (x)− b1]− ...− λk [gk (x)− bk] .

Let λ∗1 = µ∗1 for i = 1, ..., e and set λ
∗
i = 0 for i = e+1, ..., k. Using these values for λ∗ and noting

equation (13), we see that (x∗,λ∗) is a solution of the n+ k equations in n+ k unknowns

∂L

∂x1
(x∗,λ∗) = 0, ...,

∂L

∂xn
(x∗,λ∗) = 0 (14)

λ∗1 [g1 (x
∗)− b1] = 0, ..., λ∗e [ge (x∗)− be] = 0

λ∗e+1 [ge+1 (x
∗)− be+1] = 0, ..., λ∗k [gk (x∗)− bk] = 0.

Except for the condition that λ∗1 ≥ 0, ..., λ∗k ≥ 0 must hold, the proof is complete. To show the

latter consider the system of e equations in n+ e variables

g1 (x) = b1 (15)
... =

...

ge (x) = be.

By the rank condition of (11) and the IFT, there exist e coordinates xi1 , ..., xie such that we can

consider the system (15) as implicitly defining xi1 , ..., xie in terms of the rest xi’s and all the b’s.

In this latter set of exogenous variables, hold b2, ..., be constant, hold the exogenous xi’s constant,

and let b1 decrease linearly: t→ b1− t for t ≥ 0. By the IFT, as the exogenous variable b1 varies,

we can still solve the system (15) for xi1 , ..., xie . This means, in particular, that there is a C
1

curve x (t) defined for t ∈ [0, e) such that x (0) = x∗ and, for all t ∈ [0, e) ,

g1 [x (t)] = b1 − t and gi [x (t)] = bi for i = 2, ..., e. (16)

Let v = x′ (0) . Applying the Chain Rule to (16), we conclude that

Dg1 (x
∗)v = −1 and Dgi (x∗)v = 0 for i = 2, ..., e. (17)

Since x (t) lies in the constraint set for all t and x∗ maximizes f in the constraint set, f must be

nonincreasing along x (t) . Therefore,

d

dt
f [x (t)] |t=0= Df (x∗)v ≤ 0.
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Let DxL (x∗) denote the derivative of the Lagrangian with respect to x. By our first order

conditions (14) and (17)

0 = DxL (x
∗)v

= Df (x∗)v−
∑

i
λiDgi (x

∗)v

= Df (x∗)v−λ1Dg1 (x∗)v

= Df (x∗)v+λ1.

SinceDf (x∗)v ≤ 0 we conclude that λ1 ≥ 0. A similar argument shows that λi ≥ 0 for i = 2, ..., e.

This completes the proof.

Example 1. Let us consider the problem

maxx1,x2 {f (x1, x2) = x1x2 : x1 + x2 ≤ 100, x1 ≤ 40, x1 ≥ 0, x2 ≥ 0} .

Notice that the last two constraints can be rewritten as −x1 ≤ 0 and −x2 ≤ 0 respectively. The

Kuhn-Tucker conditions are displayed in the table below.

Marginal Conditions Complementary Slackness Conditions

(K-T 1′)

 x2 − λ1 − λ2 + λ3 = 0

x1 − λ1 + λ4 = 0

(K-T 2′)



λ1 ≥ 0 x1 + x2 ≤ 100

λ2 ≥ 0 x1 ≤ 40

λ3 ≥ 0 −x1 ≤ 0

λ4 ≥ 0 −x2 ≤ 0

λ1 (x1 + x2 − 100) = 0

λ2 (x1 − 40) = 0

λ3 (−x1) = 0

λ4 (−x2) = 0

There are 16 possibilities to consider! (Why?) By simple inspection we can discard some of

them. Here it does not make any sense to select x1 or x2 equal to zero, as then f (x1, x2) = 0.

Therefore, by (K-T 2′), we know that λ3 and λ4 should be both zero at a global maximum. In

addition, since f is strictly increasing on R2+ the first constraint will be binding, i.e. x1+x2 = 100

(Why?). By these two arguments the 16 possibilities reduce to only 2! (Why?)
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Marginal Conditions Complementary Slackness Conditions

(K-T 1′)

 x2 − λ1 − λ2 = 0

x1 − λ1 = 0

(K-T 2′)



λ1 ≥ 0 x1 + x2 = 100

λ2 ≥ 0 x1 ≤ 40

λ3 = 0 −x1 < 0

λ4 = 0 −x2 < 0

X

λ2 (x1 − 40) = 0

X

X

Let us study the two final possibilities. Let λ2 = 0. From (K-T 1′) we get x1 = x2 = λ1. Since

−x1 < 0 and −x2 < 0, then the candidate is x1 = x2 = λ1 = 50. This contradicts the fact that

x1 ≤ 40.

The other possibility is x1 = 40. Since x1 + x2 = 100, then x2 = 60. From (K-T 1′) λ1 = 40

and λ2 = 20. This second case satisfies all the Kuhn-Tucker conditions.

Let us check now the NDCQ. There are only three cases to test, associated to the two possible

binding restrictions:

Dg (x) =

 1 1

1 0

 , Dg1 (x) =
(
1 1

)
and Dg2 (x) =

(
1 0

)
.

Since these three matrices have full rank, then the NDCQ holds for all vector in the feasible

set.

We conclude that x1 = 40 and x2 = 60 is our candidate for a global maximizer.

Many problems in economics involve just one inequality constraint. But even in this case, the

Kuhn-Tucker conditions can be quite involved. If the objective function is nonstationary, then

the required conditions adopt a simpler form. (We will use this result in ECON 501A.)

Corollary 3. Let f and g be C1 functions and let f be nonstationary, i.e. Df (x) 6= (0, ..., 0)

for all x. Suppose that x∗ is a local maximum of f on C and that the NDCQ holds at x∗.

Then, there exists a multiplier λ∗ such that

Marginal Conditions Complementary Slackness Conditions

(K-T 1′) Df (x∗)− λ∗Dg (x∗) = (0, ..., 0)

(K-T 2′) λ∗ > 0 λ∗ [g (x∗)− b] = 0
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The next example applies Corollary 3 to a standard problem in Microeconomics.

Example 2. Consider the standard utility maximization problem. Our goal is to maximize a

C1 utility function U (x1, x2) subject to the budget constraint p1x1+ p2x2 ≤ m, where p1 and p2
represent positive unit prices. Assume that for every commodity bundle (x1, x2)

∂U

∂x1
(x1, x2) > 0 or

∂U

∂x2
(x1, x2) > 0.

This is a version of the nonstationary assumption. The Lagrangian function is

L (x1, x2, λ) = U (x1, x2)− λ [p1x1 + p2x2 −m] .

The NDCQ holds at any bundle (x1, x2) in the constraint set. (Why?) By Corollary 3, the

necessary first order conditions are, for some λ∗ > 0,

∂U

∂x1
(x∗1, x

∗
2) = λ∗p1,

∂U

∂x2
(x∗1, x

∗
2) = λ∗p2 and p1x∗1 + p2x

∗
2 −m = 0.

In particular, the first order conditions imply that (at the optimal bundle) the marginal rate

of substitution (∂U/∂x1) / (∂U/∂x2) must equal the ratio of prices p1/p2. (Provide the K-T

conditions for local maxima without assuming the nonstationary condition.) N

Let us discuss now the second order suffi cient conditions for global maxima. To include the

inequality constraints in the suffi cient conditions, we proceed as before. Given a solution (x∗,λ∗)

of the first order conditions, we divide the inequality constraints into binding and not binding

at x∗. On the one hand, we treat the binding constraints like equality constraints. On the other

hand, the multipliers for the nonbinding constraints must be zero and these constraints drop out

from the Lagrangian. The following theorem formalizes these comments.

Theorem 4. (Suffi cient conditions for a strict local maximum) Let f, g1, ..., gk be C2

functions, and assume x∗ is a feasible point satisfying the Kuhn-Tucker conditions for some λ∗.

For the sake of notation, suppose that g1, ..., ge are binding at x∗ and that the other constraints

ge+1, ..., gk are not binding. Suppose that the Hessian of L with respect to x at (x∗,λ∗) is negative

definite on the linear constraint set {v : Dge (x∗)v = 0}, that is,

v 6= 0 and Dge (x∗)v = 0⇒ vTD2
xL (x

∗,λ∗)v < 0.

Then, x∗ is a strict local maximum of f on U .
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Concavity and Optimal Solutions to Problem (P.K-T)

The next theorem provides suffi cient conditions for global maxima. As in Note 7 we assume the

objective function is concave and the constraint functions are convex.

Theorem 5. (Suffi cient conditions for a global maximum) Let f,−g1, ...,−gk be C1

concave functions. Let (x∗,λ∗) be a pair of vectors that satisfy the necessary Kuhn-Tucker

conditions. Then x∗ is a solution to problem (P.K-T).

Proof. From the first order conditions

Df (x∗)−
∑k

i=1
λiDgi (x

∗) = (0, ..., 0) . (18)

Let x be an arbitrary point in the constraint set U . For each binding constraint gi, gi (x) ≤

gi (x
∗). Since −gi is C1 and concave

−Dgi (x∗) (x− x∗) ≥ 0. (Why?)

Since λ∗i = 0 for the nonbinding constraints, then

−
∑k

i=1
λDgi (x

∗) (x− x∗) ≥ 0.

By (18) it follows that

Df (x∗) (x− x∗) ≤ 0. (Why?)

Since f is C1 and concave

f (x∗) ≥ f (x) . (Why?)

The result follows as x is an arbitrary point in the constraint set U .

The next theorem assumes the objective function is strictly concave. The added benefit of

this condition is that now, if there exists a solution to problem (P.K-T) then it is unique.

Theorem 6. (Uniqueness) Let x∗ be an optimal solution to problem (P.K-T). If f is strictly

concave and −g1, ...,−gk are all concave, then x∗ is the only optimal solution to problem (P.K-T).
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