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Note 7: Nonlinear Programming - The Lagrange Problem

Note 7 is based on de la Fuente (2000, Ch. 7) and Simon and Blume (1994, Ch. 18 and 19).

Introduction to the Lagrange Problem

Let f : Rn → R, and consider the problem

maxx {f (x) : x ∈ U} (P.L)

where

U = {x ∈ Rn : h1 (x) = a1, ..., hm (x) = am} .

We assume m ≤ n, that is, the number of constraints is at most equal to the number of decision

variables.1

This model differs from the previous one as h1 (x) = a1, ..., hm (x) = am are m equality

constraints that define the feasible set. We start by giving an intuitive interpretation of the

method of Lagrange multipliers that we will use to solve this new problem.

Consider a simple version of (P.L) with only two decision variables and one constraint

maxx1,x2 {f (x1, x2) : h (x1, x2) = a} . (1)

In Intermediate Microeconomics you learned how to solve a similar problem graphically. In Figure

1 the thicker curve is formed by the points that satisfy the constraint h (x1, x2) = a. The thinner

lines are the level sets of the objective function f . The optimal solution to the problem is the

point (x∗1, x
∗
2) which lies on the highest possible level set of f. Given certain convexity conditions,

this point can be characterized, for some µ, by

Df (x∗1, x
∗
2)− µDh (x∗1, x∗2) = (0, 0) (2)

Clearly (x∗1, x
∗
2) will also satisfy the constraint

h (x∗1, x
∗
2) = a. (3)

1All the results in this note remain valid if f : X → R where X is an open set in Rn.
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The method of Lagrange multipliers transforms the constrained optimization problem (1) in an

unconstrained problem that has the same solution(s).

Figure 1. Graphical Representation of the Lagrange Problem

Instead of directly forcing the agent to respect the constraint, imagine that we allow him

to choose the value of the choice variables x1 and x2 freely, but make him pay a fine µ "per

unit violation" of the restriction. The agent’s payoff, net of penalty, is given by the Lagrangian

function

L (x1, x2, µ) = f (x1, x2)− µ [h (x1, x2)− a] . (4)

The agent then maximizes (4), taking µ as given. By Note 6, the first order necessary conditions

for this problem are

∂L

∂x1
=

∂f

∂x1
− µ ∂h

∂x1
= 0 and

∂L

∂x2
=

∂f

∂x2
− µ ∂h

∂x2
= 0. (5)

Given an arbitrary µ there is not guarantee that the solutions to this system of equations will

be optimal solutions to the original problem. However, if we pick the correct penalty µ∗, then

the agent will have incentives to satisfy the constraint, and then the artificial function we have

constructed will give us the correct answer. Then µ∗ must be such that the constraint holds.

Hence, in addition to the two equalities in (5) the solution (x∗1, x
∗
2, µ
∗) must satisfy the feasibility

condition, that we can conveniently express as

∂L

∂µ
= a− h (x1, x2) = 0. (6)
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We have then a system of three equations that can be solved for the optimal values of the variables

of choice (x∗1, x
∗
2) and the multiplier µ

∗. Moreover, these conditions coincide with the ones you

learned in Intermediate Microeconomics [that is, conditions (2) and (3)]. Hence, the graphical

argument also suggests that the constrained maximizer of f will be characterized by conditions

(5) and (6) above, that is, by the critical points of the Lagrangian function.

This process is quite impressive. We just have reduced a constrained optimization problem

in two variables into an unconstrained problem of three variables of choice. A remark can be

made here. This reduction would not have worked if ∂h/∂x1 and ∂h/∂x2 were both zero at the

maximizer. For this reason we will make the assumption that ∂h/∂x1 and ∂h/∂x2 are not both

zero at the optimal value of the variables of choice. This restriction is often called constraint

qualification. (In general you will check if there is a point in the constraint set that violates this

condition. If it is the case, you will include it as part of the other candidates for local maxima.)

Necessary and Suffi cient Conditions for Local Maxima

We consider now the more general problem (P.L). To study this problem we need to extend to

n variables of choice and m constraint functions the qualification constraint that we used for the

case of one constraint and two variables of choice.

If we have just one constraint, h (x1, ..., xn) = a, then the natural generalization of the previous

constraint qualification is that the first-order partial derivatives of h are not all zero at the optimal

x∗, or [
∂h

∂x1
(x∗) , ...,

∂h

∂xn
(x∗)

]
6= (0, ..., 0) .

Let us define h (x) = [h1 (x) , ..., hm (x)]
T . If we are dealing with n variables of choice and

m constraints, the new natural candidate for the qualification constraint involves the Jacobian

matrix

Dh (x) =


∂h1
∂x1

(x) · · · ∂h1
∂xn

(x)
...

. . .
...

∂hm
∂x1

(x) · · · ∂hm
∂xn

(x)

 .

We say that (h1, ..., hm) satisfies the nondegenerate constraint qualification (NDCQ) at x∗ if the

rank of the Jacobian matrix Dh (x) at x = x∗ is m, that is, if Dh (x∗) has full rank. The NDCQ
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is a regularity condition [de la Fuente (2000), pp. 285-286, has an interesting justification for this

requirement]. This condition can be violated in two ways (i) if one row has all its elements equal

to zero– this violation is similar to the analyzed before; and/or (ii) if one row can be expressed

as a convex combination of the other ones.

The next theorem provides necessary conditions for local maxima.

Theorem 1. (Lagrange conditions) Let f, h1, ..., hm be C1 functions. Suppose that x∗ is a

(local) maximum of f on U, and that x∗ satisfies the NDCQ above. Then there exist µ∗1, ..., µ
∗
m

such that x∗ is a critical point of the Lagrangian function

L (x,µ) ≡ f (x)− µ∗1 [h1 (x)− a1]− ...− µ∗m [hm (x)− am] . (7)

That is,

Df (x∗)−
∑m

i=1
µ∗iDhi (x

∗) = (0, ..., 0) . (8)

Remark. The Lagrange conditions imply that (x∗,µ∗) is a critical point of L (x,µ). (Why?).

Proof. The theorem assumes that x∗ maximizes f on the constraint set

U = {x ∈ Rn : h1 (x) = a1, ..., hm (x) = am}

and that the Jacobian matrix

Dh (x∗) =


∂h1
∂x1

(x∗) · · · ∂h1
∂xn

(x∗)
...

. . .
...

∂hm
∂x1

(x∗) · · · ∂hm
∂xn

(x∗)

 .

has maximal rank m.

We first claim that the (m+ 1)× n Jacobian matrix

∂f
∂x1

(x∗) · · · ∂f
∂xn

(x∗)

∂h1
∂x1

(x∗) · · · ∂h1
∂xn

(x∗)
...

. . .
...

∂hm
∂x1

(x∗) · · · ∂hm
∂xn

(x∗)

 . (9)
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does not have maximal rank. Let f (x∗) = a0, and consider the system of equations

f (x) = a0 (10)

h1 (x) = a1

... =
...

hm (x) = am.

We know that x∗ is a solution to (10). Think on the right hand side as exogenous variables. Then

the matrix (9) is simply the Jacobian of the system (10) with respect to the endogenous variables

x1, ..., xn.

Suppose the matrix (9) does have maximal rank m+1. Then by the IFT we can vary the ai’s

to a′i’s a little bit and still find a solution to the revised system (10) with the a′i’s on the right

hand side. In particular we can select a′0 = a0 + ε and a′i = ai for i = 1, ...,m, where ε is a small

positive number. By the IFT there will be a solution (x∗∗1 , ..., x
∗∗
n ) to the perturbed system

f (x) = a0 + ε (11)

h1 (x) = a1

... =
...

hm (x) = am.

Notice that (x∗∗1 , ..., x
∗∗
n ) is in U and f (x∗∗) = a0 + ε > a0 = f (x∗) . This is a contradiction, and

therefore (9) does not have rank m+ 1. This means that its m+ 1 rows are linearly dependent;

that is, there exist scalars α0, α1, ..., αm, not all zero, such that

α0


∂f
∂x1

(x∗)
...

∂f
∂xn

(x∗)

+ α1


∂h1
∂x1

(x∗)
...

∂h1
∂xn

(x∗)

+ ...+ αm


∂hm
∂x1

(x∗)
...

∂hm
∂xn

(x∗)

 =


0
...

0

 . (12)

By the NDCQ, we conclude that α0 6= 0. (Why?) So we can divide (12) by α0 and let µi = −αi/α0
for i = 1, ...,m to get

∂f
∂x1

(x∗)
...

∂f
∂xn

(x∗)

− µ1


∂h1
∂x1

(x∗)
...

∂h1
∂xn

(x∗)

− ...− µm


∂hm
∂x1

(x∗)
...

∂hm
∂xn

(x∗)

 =


0
...

0

 (13)
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which completes the proof.

The next example sheds light on the implementation of the Lagrangian method.

Example 1. Consider the problem of maximizing f (x1, x2, x3) = x
1/3
1 x

1/3
2 x

1/3
3 subject to

h1 (x1, x2, x3) ≡ x1 + x3 = 1 and h2 (x1, x2, x3) ≡ x22 + x23 = 1.

First compute the Jacobian matrix of the constraint set

Dh (x) =

 1 0 1

0 2x2 2x3

 .

Notice that its rank is 2 unless x2 = x3 = 0. Since (for any x1) x2 = x3 = 0 violates the constraint

set, then all points in the constraint set satisfy the NDCQ. The Lagrangian function is given by

L (x1, x2, x3, µ1, µ2) = x
1/3
1 x

1/3
2 x

1/3
3 − µ1 (x1 + x3 − 1)− µ2

(
x22 + x

2
3 − 1

)
.

Its partial derivatives are

∂L

∂x1
= (1/3)x

−2/3
1 x

1/3
2 x

1/3
3 − µ1 = 0

∂L

∂x2
= (1/3)x

1/3
1 x

−2/3
2 x

1/3
3 − 2µ2x2 = 0

∂L

∂x3
= (1/3)x

1/3
1 x

1/3
2 x

−2/3
3 − µ1 − 2µ2x3 = 0

∂L

∂µ1
= 1− x1 − x3 = 0

∂L

∂µ2
= 1− x22 − x23 = 0.

After the corresponding substitutions we obtain the Largangian has four critical points

x1 = 0.4373 x2 = ±0.9008 x3 = 0.5657

x1 = −0.7676 x2 = ±0.6409 x3 = 1.7676
.

So far, these are just candidates for maxima. N

Theorem 1 provides necessary conditions for local maxima: if x∗ is a (local) maximum of f

on U (and the NDCQ holds at x∗) then there exist a vector µ∗ so that (x∗,µ∗) is a critical point

of the Lagrangian function. These conditions are certainly not suffi cient for x∗ to be a maximum.

6



In order to discriminate (among the critical points) between local maxima, local minima and

saddle points we use an alternative set of suffi cient conditions. These second order conditions

often entail interesting information to perform comparative statics, as we will study later.

Intuitively, the second order conditions for a constrained optimization problem should involve

the negative definiteness of some Hessian matrix as in the unconstrained problem, but now they

should only be concerned with directions along the constraint set. The next example elaborates

on this idea.

Example 2. Suppose that the objective function f (x) = xTHx is quadratic for some symmetric

matrix H, and that the constraint set is defined by the linear equations h (x) ≡ Ax = 0. Since

0 is in the constraint set and since it is a critical point of f , it is natural to ask whether 0 is the

constraint maximum. Analytically, we want to know whether

xTHx ≤ 0 for all x such that Ax = 0.

Since this is the same as asking whether the matrix H is negative definite on the constraint set

Ax = 0, the answer is in Note 4. N

In the general problem (P.L), the first order conditions involve finding the critical points of

the Lagrangian function

L (x,µ) ≡ f (x)− µ1 [h1 (x)− a1]− ...− µm [hm (x)− am] . (14)

Let (x∗,µ∗) be a critical point of L. We expect that the second order conditions involve the

negative definiteness of a quadratic form along a linear constraint set. A natural candidate for

the quadratic form is the Hessian of the Lagrangian function with respect to x1, ..., xn (as in the

unconstrained problem). The natural linear constraint is the hyperplane that is tangent to the

constraint set {x ∈ Rn : h (x) = a} at the point x∗. The next theorem shows that our intuition

is, in fact, correct.

Theorem 2. (Suffi cient conditions for a strict local maximum) Let f, h1, ..., hm be C2

functions, and assume x∗ is a feasible point satisfying the Lagrange conditions for some µ∗.

Suppose the Hessian of the Lagrangian function (7) with respect to x at (x∗,µ∗) , D2
xL (x

∗,µ∗),

is negative definite on the linear constraint set {v : Dh (x∗)v = 0}, that is,

v 6= 0 and Dh (x∗)v = 0⇒ vTD2
xL (x

∗,µ∗)v < 0.
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Then, x∗ is a strict local maximum of f on U .

Remark. If the goal is to minimize the objective function, replace negative definite by positive

definite and < by > in the last restriction

Proof. See SB pp. 462-463 for the proof of Theorem 2 in the case of two variables of choice and

one restriction.

Note 4 provides a tractable way to check the negative definiteness of a quadratic form on a

linear restriction. To apply that idea to the last condition in Theorem 2, we first border the n×n

Hessian matrix D2
xL (x

∗,µ∗) with the m×n Jacobian matrix of the equality constraints Dh (x∗)

H ≡

 0 Dh (x∗)

Dh (x∗)T D2
xL (x

∗,µ∗)

 =



0 · · · 0
...
. . .

...

0 · · · 0

∂h1
∂x1

· · · ∂h1
∂xn

...
. . .

...

∂hm
∂x1

· · · ∂hm
∂xn

∂h1
∂x1

· · · ∂hm
∂x1

...
. . .

...

∂h1
∂xn

· · · ∂hm
∂xn

∂2L
∂x21

· · · ∂2L
∂x1∂xn

...
. . .

...

∂2L
∂xn∂x1

· · · ∂2L
∂x2n


.

If the last (n−m) leading principal minors of H alternate sign, with the sign of the determinant

of matrix H the same as the sign of (−1)n, then the last requirement of Theorem 2 holds.

There is a more natural way to describe the previous test. The Hessian of the Lagrangian (7)

with respect to all the (m+ n) variables is

D2L (x∗,µ∗) =



0 · · · 0
...
. . .

...

0 · · · 0

−∂h1∂x1
· · · − ∂h1∂xn

...
. . .

...

−∂hm∂x1 · · · −∂hm∂xn

−∂h1∂x1
· · · −∂hm∂x1

...
. . .

...

− ∂h1∂xn
· · · −∂hm∂xn

∂2L
∂x21

· · · ∂2L
∂x1∂xn

...
. . .

...

∂2L
∂xn∂x1

· · · ∂2L
∂x2n


.

Since we can obtain D2L (x∗,µ∗) from H by multiplying in the former the last n rows and each

of the last n columns by −1, both matrices have the same principal minors. (Why?) Therefore

we can use D2L (x∗,µ∗) instead of H to check the main requirement of Theorem 2; the rule does

not change.
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Example 3. Consider the problem in Example 1. The border Hessian H is given by

H ≡



0 0 1 0 1

0 0 0 2x2 2x3

1 0 (−2/9)x−5/31 x
1/3
2 x

1/3
3 (1/9)x

−2/3
1 x

−2/3
2 x

1/3
3 (1/9)x

−2/3
1 x

1/3
2 x

−2/3
3

0 2x2 (1/9)x
−2/3
1 x

−2/3
2 x

1/3
3 (−2/9)x1/31 x

−5/3
2 x

1/3
3 − 2µ2 (1/9)x

1/3
1 x

−2/3
2 x

−2/3
3

1 2x3 (1/9)x
−2/3
1 x

1/3
2 x

−2/3
3 (1/9)x

1/3
1 x

−2/3
2 x

−2/3
3 (−2/9)x1/31 x

1/3
2 x

−5/3
3 − 2µ2


.

(Use the previous test to evaluate the four critical points obtained in Example 1.)

Concavity and Optimal Solutions to Problem (P.L)

In Note 6 we showed for the unconstrained optimization problem that the necessary conditions

for local maxima are also suffi cient if the objective function is concave. Moreover, we showed that

if the objective function is concave then the local maximizers are in fact global maxima. A similar

result holds for constrained optimization problems, but here we need some extra conditions on

the constraint functions as well.

Theorem 3. (Suffi cient conditions for an optimal solution) Let f,−h1, ...,−hm be C1

and concave functions. If (x∗,µ∗) satisfies the Lagrange condition, Df (x∗)−
∑m
i=1 µ

∗
iDhi (x

∗) =

(0, ..., 0), with x∗ in U and µ∗ ≥ (0, ..., 0), then x∗ is a solution to problem (P.L).

Proof. From the first order conditions

Df (x∗)−
∑m

i=1
µ∗iDhi (x

∗) = (0, ..., 0) . (15)

Let x be an arbitrary point in the constraint set U , so that hi (x) = hi (x
∗) for i = 1, ...,m.

Since −hi is C1 and concave for i = 1, ...,m, then

−Dhi (x∗) (x− x∗) ≥ 0 for i = 1, ...,m. (Why?)

Since µ∗1, ..., µ
∗
m are all positive, then

−
∑m

i=1
µ∗iDhi (x

∗) (x− x∗) ≥ 0.

By (15) it follows that

Df (x∗) (x− x∗) ≤ 0. (Why?)
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Since f is C1 and concave

f (x∗) ≥ f (x) . (Why?)

The result follows as x is an arbitrary point in the constraint set U .
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