
Natalia Lazzati

Mathematics for Economics

Note 6: Nonlinear Programming - Unconstrained Optimization

Note 6 is based on de la Fuente (2000, Ch. 7), Madden (1986, Ch. 3 and 5) and Simon and

Blume (1994, Ch. 17).

One objective of using economic models is to make predictions concerning the behavior of

individuals and groups in situations of interest. This is possible if their behavior exhibits some

sort of regularity. In economic theory it is often assumed that individuals have well-specified

and consistent preferences over the set of possible results and their actions; and, that given those

preferences, they choose their actions so as to obtain the best result among those available.

The latter postulates lead us to model the behavior of economic agents as the outcome of

either a constrained or an unconstrained optimization problem. Notes 6-8 and 11 develop the

"technology" for analyzing such problems, that is, nonlinear programming.

Nonlinear Programming (NLP)

The term NLP refers to a set of mathematical methods for characterizing the solutions to

(un)constrained optimization problems. In general, the basic NLP problem can be written as

maxx {f (x) : x ∈ U} (P)

where f : Rn → R and U ⊆ Rn. That is, we seek the value of x that maximizes the function f

within the set U in Rn.

In problem (P), x is a vector of decision variables; U is the constraint set, or the set of all the

possible values that x can take; and f is a real-valued function, known as the objective function.

A rational agent will choose an optimal plan x∗, defined as the one that maximizes the value of

the objective function f over the constraint set U .

Definition 1. We say x∗ is a (global) maximum of f on U if it is a solution to the problem (P).

That is, if x∗ ∈ U and f (x∗) ≥ f (x) for all x in U. The point x∗ ∈ U is a strict maximum if it

is a maximum and f (x∗) > f (x) for all x 6= x∗ in U.
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We want to find a set of necessary and suffi cient conditions characterizing solutions to (P).

That is, a set of conditions such that if x∗ is a solution to the problem (P), then these conditions

are satisfied by x∗ (necessary); and a set of conditions such that if x∗ satisfies them, then x∗

is a solution to (P) (suffi cient). Although Definition 1 describes x∗ without using any notion of

differentiability, calculus facilitates its characterization. As a consequence, most of the techniques

we will study involve taking derivatives. [Do not forget however that problem (P) can be solved

even if f is not differentiable. For instance, the problem maxx {f (x) : x ∈ U} with f (x) = |x|

and U = (−1, 1)n has a unique solution at x∗ = (0, ..., 0)T , but the objective function is not

differentiable at the null-vector.

As it is often the case, we will start with a simpler task. We will first derive necessary and

suffi cient conditions for local (instead of global) maxima.]

Definition 2. A point x∗ ∈ U is a local maximum of f on U if there is a ball Br around x∗ such

that f (x∗) ≥ f (x) for all x ∈ Br (x∗) ∩ U. The point x∗ ∈ U is a strict local maximum if it is a

local maximum and f (x∗) > f (x) for all x 6= x∗ in Br (x∗) ∩ U.

Having described local maxima, we will go back to the original objective of characterizing

global maxima, that is, the solutions to problem (P). To this end we will use an approach that

relies on both the curvature of the objective function and the convexity of the constraint set.

This approach is often called concave (or quasiconcave) programming.

In this course we consider three versions of the optimization problem that differ in terms of

the way in which the feasible set is described

(a) Open constraint set, where the constraint set U is just an open set U in Rn;

(b) Lagrange problems, where the constraint set is defined as a set of equality constraints

U = {x ∈ Rn : h1 (x) = a1, ..., hm (x) = am} ; and

(c) Kuhn-Tucker problems, where the constraint set is defined as a set of inequality constraints

U = {x ∈ Rn : g1 (x) ≤ b1, ..., gk (x) ≤ bk} .
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This note studies the first case, often called unconstrained optimization problem. Notes 7 and 8

cover the other two, respectively.

Remark. This note focuses on the maximization problem. We do this because the problem

minx {f (x) : x ∈ U} can be rewritten as problem (P) by substituting f (.) with −f (.).

Necessary and Suffi cient Conditions for Local Maxima

Consider the problem

maxx {f (x) : x ∈ U} (P.U)

where f : Rn → R and U is an open set in Rn. Problem (P.U) is often called unconstrained

optimization problem.

Let us assume for the moment that U is an open subset of the real line. Recall that if f is

C1 and x∗ is a maximum of f on U , then f ′ (x∗) = 0. Visually, if x∗ is a maximum of f on U,

then the tangent line to the graph of f at [f (x∗) , x∗] must be horizontal. A similar first order

condition works for a function f of n variables.

Theorem 3. (Necessary conditions for a local maximum) Let f be a C1 function. If x∗

is a local maximum of f on U , then

∂f

∂xi
(x∗) = 0 for i = 1, ..., n.

Proof. Let B = Br (x
∗) be a ball around x∗ in U with the property that f (x∗) ≥ f (x) for all

x ∈ B. Since x∗ maximizes f on B, along each line segment through x∗ that lies in B and that

is parallel to one of the axes, f takes on its maximum value at x∗. In other words, x∗i maximizes

the function of one variable

xi → f
(
x∗1, ..., x

∗
i−1, xi, x

∗
i+1, ..., x

∗
n

)
for xi ∈ (x∗i − r, x∗i + r) . Apply the standard one variable maximization criterion to each of these

n one-dimensional problems to conclude that

∂f

∂xi
(x∗) = 0 for i = 1, ..., n
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which shows our claim.

Let us apply the idea to a simple example.

Example 1. To find a local maximum of f (x1, x2) = −x31 + x32 − 9x1x2, we take the partial

derivatives and make them equal to zero

∂f (x1, x2) /∂x1 = −3x21 − 9x2 = 0 and ∂f (x1, x2) /∂x2 = 3x22 − 9x1 = 0.

Then we solve for the values of x1 and x2 that satisfy these two equations simultaneously. The

two solutions are (0, 0) and (3,−3). So far, we can only say that these points are two candidates

for local maxima. N

Stationarity at x∗ is certainly not suffi cient for x∗ to be a local maximum. Think, for instance,

in the functions f (x) = x2 and f (x) = x3. In both cases f ′ (0) = 0, so that 0 is a critical point

but it is not a local maximum. In the first case x∗ = 0 is a global minimum, and in the second

one it is a saddle point. Before introducing suffi cient conditions for local maxima, we need to

extend the notion of critical point to higher dimensions.

Definition 4. An n-dimensional vector x∗ is a critical point of a function f : Rn → R if x∗

satisfies
∂f

∂xi
(x∗) = 0 for i = 1, ..., n.

The critical points in Example 1 are (0, 0) and (3,−3) . In order to determine whether any

of these points is a local maximum, we will use second order derivatives of f . The next theorem

describes suffi cient conditions for strict local maxima.

Theorem 5. (Suffi cient conditions for a strict local maximum) Let f be a C2 function.

Suppose that x∗ is a critical point of f on U , and that its Hessian matrix is negative definite at

x∗, i.e. D2f (x∗) is negative definite. Then x∗ is a strict local maximum of f on U .

Remark. For strict local minimum the matrix D2f (x∗) must be positive definite.

We offer a sketch of the proof. Let x∗ be a critical point of f on U . A C2 function can be

approximated around x∗ by its Taylor polynomial expansion

f (x∗ + h) = f (x∗) +Df (x∗)h+
1

2
hTD2f (x∗)h+E (h)
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where E (h) is the remainder term that goes to 0 very quickly as h→ 0 (see Note 2). If we ignore

the latter and remember that Df (x∗) = (0, ..., 0) (Why?), then

f (x∗ + h)− f (x∗) ≈ 1
2
hTD2f (x∗)h.

Now if D2f (x∗) is negative definite, then 1
2h

TD2f (x∗)h < 0 for all h 6= 0.Which is the same as

to say f (x∗ + h) < f (x∗) for any small h 6= 0. In other words x∗ is a strict local maximum.

A second order necessary, but not suffi cient, condition for a critical point x∗ of a C2 function

to be a local maximum (minimum) is that D2f (x∗) be negative (positive) semi-definite (think

in f (x) = x3 at x = 0!). Therefore, if f is a C2 function and we find that D2f (x∗) is neither

positive nor negative semi-definite at a critical point x∗, then x∗ is a saddle-point.

Example 2. Consider the problem in Example 1. The Hessian of f (x1, x2) is

D2f (x1, x2) =

 −6x1 −9

−9 6x2

 .

At the two critical points

D2f (0, 0) =

 0 −9

−9 0

 and D2f (3,−3) =

 −18 −9

−9 −18

 .

Since D2f (0, 0) is neither positive nor negative semi-definite, then (0, 0) is a saddle point. At

the second critical point, the matrix D2f (3,−3) is negative definite. (Check it.) Therefore, by

Theorem 5, the point (3,−3) is a strict local maximum of f (x1, x2) . N

Concavity and Optimal Solutions to Problem (P.U)

In the previous section we obtained that if f is a C2 function, x∗ is a critical point of f on U and

the Hessian matrix at the critical point is negative definite, then x∗ is a strict local maximum. In

this section we imposse more structure on the problem to extend these ideas to optimal solutions

of the initial problem.

Remark. Since concave functions are defined only on convex sets, this section assumes the set

U is both open and convex.
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Let us restrict attention to concave functions of a single variable, and assume that x∗ is a

critical point. If f is also C1, then the tangent line to the graph of f at [f (x∗) , x∗] is horizontal

and has height f (x∗). But we know from the first derivative characterization of concave functions,

that the tangent line at any point lies entirely on or above the graph. Hence f (x∗) is at least

as large as any other possible value of f (x) , and x∗ must be a global maximum of the objective

function in the constraint set, that is, a solution to problem (P.U). The next theorem states that

this argument extends to higher dimensions.

Theorem 6. (Suffi cient conditions for an optimal solution) Let f be a C1 concave function.

If there exists a point x∗ ∈ U that satisfies Df (x∗) = (0, .., 0) , then x∗ is a global maximum of

x∗ on U , that is, a solution to problem (P.U).

Proof. Since f is C1 and concave we know that

f
(
x′
)
+Df

(
x′
) (
x− x′

)
≥ f (x) (1)

∀x,x′ ∈ U. Since (1) holds for all x′ ∈ U it must be true for x′ = x∗, then

f (x∗) +Df (x∗) (x− x∗) ≥ f (x) (2)

∀x ∈ U. By initial assumption, Df (x∗) = (0, .., 0) . Since x was arbitrarily selected, then (2)

implies that f (x∗) ≥ f (x) ∀x ∈ U. This completes the proof.

Theorem 6 characterizes the maxima of concave functions that are continuously differentiable.

A related question is: How many maxima can a concave function possess? To answer this question

let us analyze two examples. Think first in the function f (x) = −x2. This function is strictly

concave and it has a unique maximum at x∗ = 0. Let us consider now the function

f (x) =


−x4 if x ≤ 0

0 if x ∈ (0, 1)

− (x− 1)4 if x ≥ 1

.

In this second case, any x∗ in [0, 1] is a global maximum. Then the set of maximizers is an

infinite subset of R. This second function is concave, but not strictly concave.

These observations are captured by the next theorem.
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Theorem 7. (Uniqueness) A strictly concave function f : U → R with convex domain U ⊆ Rn,

cannot possess more than one global maximum. It follows that if f is strictly concave, then

problem (P.U) has at most one solution.

Proof. Suppose the statement is false and let x∗ and x∗∗ in U be two different global maxima of

the strictly concave function f . Since U is convex, then λx∗ + (1− λ)x∗∗ ∈ U for all λ ∈ [0, 1] .

By strict concavity of f

f [λx∗ + (1− λ)x∗∗] > λf (x∗) + (1− λ) f (x∗∗) for all λ ∈ (0, 1) .

Since f (x∗) = f (x∗∗) (Why?), then

f [λx∗ + (1− λ)x∗∗] > f (x∗) = f (x∗∗) for all λ ∈ (0, 1) .

and x∗ and x∗∗ are not global maxima, which is a contradiction.

In the second example, the function is not strictly concave and the number of maximizers is

infinite. Nevertheless, they have a nice particular structure: the set of maximizers is a convex

set. This observation is also general.

Theorem 8. (Convex solution set) Assume a concave function f : U → R with convex domain

U ⊆ Rn, has more than one global maximum. Then the set of global maxima is a convex set, i.e.

if x∗ and x∗∗ are two different global maxima, then λx∗ + (1− λ)x∗∗ is also a global maximum

for all λ ∈ [0, 1] . It follows that if f is concave and problem (P.U) has more than one solution,

then the solution set is a convex set.

Proof. (Show the result.)

We end this note with a standard economic application to firm behavior.

Example 3. Suppose a firm uses n inputs to produce a single output. If x ∈ Rn+ represents an

input bundle, if y = f(x) is the firm C1 and strictly concave production function, and if p is the

selling price of its product, then the firm revenue is pf(x).

Let w denote the vector of input prices. Then the firm’s profits are given by

π(x) = pf(x)−w · x.
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Assume that f(.) and w are such that the profit-maximizing firm uses positive amounts of each

input so that the profit maximizing bundle, x∗, occurs in the interior of Rn+. Then by Theorem

3 the partial derivatives of π(x) must be zero at the profit-maximizing x∗

∂π

∂xi
(x∗) = p

∂f

∂xi
(x∗)− wi = 0 for i = 1, 2, ...n. (3)

In particular, the marginal revenue from using one more unit of input i must just balance the

marginal cost of purchasing another unit of input i.

Notice that π(x) is strictly concave on Rn+. (Why?) Then by Theorems 6 and 7 if there is an

x∗ that satisfies (3), it is the unique bundle that maximizes firm’s profits. N
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