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Note 5: Convex Sets and Concave Functions

Note 5 is based on Madden (1986, Ch. 1, 2, 4 and 7) and Simon and Blume (1994, Ch. 13 and

21).

Concave functions play a key role in optimization as they provide much more structure to the

problem. For instance, in unconstrained optimization problems if the objective function is C1

and concave, then the first order conditions fully characterize global maxima.

We start the analysis with the notion of convex sets, as they are the domain of concave

functions. (Do not confuse convex sets with convex functions!) Then we define concave functions

and characterize them in alternative ways. We end this note describing some useful properties of

this kind of functions.

Convex Sets

Let us consider a set S ⊂ R and suppose x, x′ ∈ S with x ≤ x′. The set [x, x′] is then a set of real

numbers between (and including) x and x′, or visually, the set of all points on the line joining x

to x′. Now it may or may not be that [x, x′] ⊂ S. If it is the case that for all x, x′ ∈ S with x ≤ x′

we have that [x, x′] ⊂ S, then we say that S is a convex set. The next definition formalizes this

idea.

Definition 1. (Convex set) A set S ⊂ R is convex if, ∀λ ∈ [0, 1] and ∀x, x′ ∈ S,

λx+ (1− λ)x′ ∈ S.

If x, x′ ∈ R and λ ∈ [0, 1], then λx+(1− λ)x′ is said to be a convex combination of x and x′.

Definition 1 simply says that S is a convex set if any convex combination of every two elements

of S is also in S.

Example 1. Consider the interval [a, b] ⊂ R. We next show that this interval is a convex set.

Let x, x′ ∈ [a, b] be two arbitrary elements. We need to prove that λx+ (1− λ)x′ ∈ [a, b] for all

λ ∈ [0, 1] .
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Select an arbitrary λ in [0, 1]. Since x, x′ ∈ [a, b], then x, x′ ≤ b. As λ ∈ [0, 1], it follows that

λx+(1− λ)x′ ≤ b. Using a similar argument λx+(1− λ)x′ ≥ a. As λ, x and x′ were arbitrarily

chosen, then λx+ (1− λ)x′ ∈ [a, b] ∀x, x′ ∈ [a, b] and ∀λ ∈ [0, 1] . N

Let us move to higher dimensions. The Cartesian product of n sets A1, A2, ..., An, written

A1 ×A2 × ...×An, is the set of all ordered tuples (x1, x2, ..., xn) such that x1 ∈ A1, x2 ∈ A2, ...,

and xn ∈ An. A convex set in Rn can be visualized in the same way as in R; S ⊂ Rn is convex if

and only if the line joining any two points in the set lies entirely within the set.

Definition 2. A set S ⊂ Rn is convex if, ∀λ ∈ [0, 1] and ∀x,x′ ∈ S,

λx+ (1− λ)x′ ∈ S.

(Show that [a, b]× [a, b] ⊂ R2 is a convex set.)

The next theorem states that the intersection of two convex sets is a convex set.

Theorem 3. If S and T are two convex sets in Rn then S ∩ T is a convex set.

Proof. Let x,x′ ∈ S ∩ T . Then x,x′ ∈ S and x,x′ ∈ T. Since S and T are convex sets it follows

that x′′ ∈ S and x′′ ∈ T where

x′′ = λx+ (1− λ)x′ and λ ∈ [0, 1] .

Hence x′′ ∈ S ∩ T . Since this is true for any x,x′ ∈ S ∩ T and any λ ∈ [0, 1], S ∩ T is convex.

In fact the intersection of an infinite collection of convex sets is convex as well. (Show that

the union of two convex sets need not be convex. Hint: find a counter-example.)

A very important family of subsets of Rn are the hyperplanes.

Definition 4. A set H ⊂ Rn is a hyperplane if it can be described as

H = {x ∈ Rn :
∑n
i=1 αixi = β}

for some β ∈ R and some (α1, ..., αn) ⊂ Rn such that αi 6= 0 for some i.

In the case of n = 1, then H contains just the single point β/α. In the case of n = 2 and

α1, α2 6= 0, then the hyperplane is a straight line with equation α1x1 + α2x2 = β. In the usual
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representation (x2 measured vertically and x1 horizontally) if α1 = 0 then H corresponds to an

horizontal line. If, alternatively, α2 = 0 then H corresponds to a vertical line.

Generally, a hyperplane in Rn "splits" Rn in two parts: those points above or below the

hyperplane. Therefore, associated to H we can define

H+ = {x ∈ Rn :
∑n
i=1 αixi ≥ β}

and

H− = {x ∈ Rn :
∑n
i=1 αixi ≤ β} .

Notice that H+ ∪H− = Rn and H+ ∩H− = H.

Theorem 5. A hyperplane H and its associated half spaces H+ and H− are always convex sets.

Proof. (Show this result.)

The major importance of hyperplanes stems from the celebrated theorems about (general)

convex sets. We describe one of them without proof.

Theorem 6. (The Separating Hyperplane Theorem) If S and T are two disjoint convex

sets in Rn then there is a hyperplane H ⊂ Rn such that S ⊂ H+ and T ⊂ H−.

(To convince yourself about the result draw two pictures, one for H ⊂ R and

another one for H ⊂ R2.)

Concave Functions

Concave Functions on R

For functions of one variable there is a familiar and useful visual representation. The graph of f,

which we denote Gf , is described as follows

Gf =
{
(y, x) ∈ R2 : y = f (x) , x ∈ R

}
.

Then Gf is the set of all ordered pairs [f (x) , x] for x ∈ R. When x ∈ R, then Gf ⊂ R2.
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If we draw the graph of a function f : R→ R we may or may not find that this graph possesses

the following geometric feature

(GF) The straight line joining any two points on the graph lies entirely on or below the graph.

The concept of a concave function evolves from (GF). A function of one variable is concave if

and only if its graph possesses the geometric feature (GF). We next formalize this idea.

Definition 7. (Concavity in R) A function f : R→ R is concave if

f
[
λx+ (1− λ)x′

]
≥ λf (x) + (1− λ) f

(
x′
)

∀λ ∈ [0, 1] and ∀x, x′ ∈ R. For strict concavity replace ≥ by > and [0, 1] by (0, 1) whenever x 6= x′.

Remark. In Definition 7 the domain of f is the whole real line, which is a convex set. As we

shall emphasize at the end of this note, the domain of concave functions can be restricted to any

other convex set S ⊂ R.

(Use Definition 7 to show that f (x) = −x2 is a concave function on R.) By doing

so you will realize that this demonstration is tortuous even when the function is very simple.

Fortunately, at least for differentiable functions, there are easier ways to identify concavity.

If a function f : R → R is concave, then it is continuous. Nevertheless it may not be differ-

entiable, e.g. f (x) = − |x| is strictly concave on R but it is not differentiable at x = 0. Consider

for the moment the graph of a concave function that is both continuous and differentiable. After

a minute of reflection you will realize the graph has the next property

(New GF) At any point of the graph, the tangent line to the graph at that point lies entirely on

or above the graph.

Using the tangent line formula, the last observation translate to the statement

f
(
x′
)
+
(
x− x′

)
f ′
(
x′
)
≥ f (x)

∀x, x′ ∈ R. Our argument states that if the function is differentiable and concave, then the last

inequality must hold. The next theorem states that for C1 functions the opposite is also true.

4



Theorem 8. Suppose f : R→ R is C1. Then f is concave if and only if

f
(
x′
)
+
(
x− x′

)
f ′
(
x′
)
≥ f (x)

∀x, x′ ∈ R. For strict concavity replace ≥ by > whenever x 6= x′.

Proof. (If) Suppose f (x′)+(x− x′) f ′ (x′) ≥ f (x) ∀x, x′ ∈ R.We have to show that this implies

f
[
λx+ (1− λ)x′

]
≥ λf (x) + (1− λ) f

(
x′
)

∀λ ∈ [0, 1] and ∀x, x′ ∈ R. To this end choose any two x, x′ ∈ R and any λ ∈ [0, 1]. We write x′′

for λx+ (1− λ)x′. From the initial assumption it follows that

f
(
x′′
)
+
(
x− x′′

)
f ′
(
x′′
)
≥ f (x) (1)

and

f
(
x′′
)
+
(
x′ − x′′

)
f ′
(
x′′
)
≥ f

(
x′
)
. (2)

Multiplying (1) by λ and (2) by (1− λ) and adding gives, since λ ∈ [0, 1],

f
(
x′′
)
+ f ′

(
x′′
) [
λx+ (1− λ)x′ − x′′

]
≥ λf (x) + (1− λ) f

(
x′
)
.

As x′′ = λx+ (1− λ)x′ then

f
[
λx+ (1− λ)x′

]
≥ λf (x) + (1− λ) f

(
x′
)
.

Since this is true ∀λ ∈ [0, 1] and ∀x, x′ ∈ R then f is concave. (Note that f ′ (x′′) <∞ because f

is C1.)

(Only if) Now suppose f is concave. We need to show that this implies

f
(
x′
)
+
(
x− x′

)
f ′
(
x′
)
≥ f (x)

∀x, x′ ∈ R. If x = x′ the implication follows immediately, so suppose this is not the case. By

concavity

f
[
λx+ (1− λ)x′

]
≥ λf (x) + (1− λ) f

(
x′
)

∀λ ∈ [0, 1] and ∀x, x′ ∈ R. Or rearranging terms

f
[
x′ + λ

(
x− x′

)]
− f

(
x′
)
≥ λ

[
f (x)− f

(
x′
)]
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∀λ ∈ [0, 1] and ∀x, x′ ∈ R. Assuming λ differs from 0 we can get

(
x− x′

) f [x′ + λ (x− x′)]− f (x′)
λ (x− x′) ≥ f (x)− f

(
x′
)

∀λ ∈ (0, 1] and ∀x, x′ ∈ R. Substituting λ (x− x′) by 4x

(
x− x′

) f [x′ +4x]− f (x′)
4x ≥ f (x)− f

(
x′
)
.

Taking take the limit when λ→ 0

(
x− x′

)
f ′
(
x′
)
≥ f (x)− f

(
x′
)

or

f
(
x′
)
+
(
x− x′

)
f ′
(
x′
)
≥ f (x)

∀x, x′ ∈ R. This completes the proof.

(Now use Theorem 8 to show that f (x) = −x2 is a concave function on R.) The

characterization of concavity takes an even simpler form for functions that are twice continuously

differentiable. This characterization has again an obvious geometric meaning. The slope of the

graph diminishes as x increases; that is f ′′ (x) ≤ 0 everywhere. The next theorem states that the

"reverse" implication is also true.

Theorem 9. Suppose f : R→ R is C2. Then f is concave if and only if

f ′′ (x) ≤ 0

∀x ∈ R. Moreover, if f ′′ (x) < 0 ∀x ∈ R, then f is strictly concave.

Proof. (Show this result.)

(Use Theorem 9 to show that f (x) = −x2 is a concave function on R.) Note that

f ′′ (x) < 0 for all x ∈ R is suffi cient (but not necessary) for f to be strictly concave. For instance,

the function f (x) = −x4 is strictly concave but f ′′ (0) = 0.

Convex functions can be defined in a similar way. In particular f : R→ R is a convex function

if and only if −f : R→ R is concave. So you do not need to remember more theorems!
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There is an alternative characterization of concave and convex functions that does not require

differentiability. It is in terms of the convexity of certain sets associated with the graphs of the

corresponding functions. For f : R→ R the hypograph of f, HGf is

HGf =
{
(y, x) ∈ R2 : y ≤ f (x) for some x ∈ R

}
.

Similarly, the epigraph of f, EGf is

EGf =
{
(y, x) ∈ R2 : y ≥ f (x) for some x ∈ R

}
.

Visually the hypograph of f is the set of points in R2 which lie on or below the graph of f, while

the epigraph is the set of points in R2 which lie on or above the graph of f . (Illustrate these

concepts for f (x) = − |x| .)

The next theorem characterizes concave functions through their hypographs.

Theorem 10. A function f : R→ R is concave if and only if its hypograph is a convex set.

Proof. (If) Suppose HGf is a convex set and choose any x, x′ ∈ R; let f (x) = y and f (x′) = y′.

Then (x, y) ∈ HGf and (x′, y′) ∈ HGf . Since HGf is a convex set, we have

[
λx+ (1− λ)x′, λy + (1− λ) y′

]
∈ HGf

∀λ ∈ [0, 1]. That is

f
[
λx+ (1− λ)x′

]
≥ λy + (1− λ) y′

∀λ ∈ [0, 1]. Since this is true for all x, x′ ∈ R then f is concave.

(Only if) Suppose f is concave and let (x, y) ∈ HGf and (x′, y′) ∈ HGf ; that is

f (x) ≥ y and f
(
x′
)
≥ y′.

Multiplying the first inequality by λ, the second one by (1− λ), and adding

λf (x) + (1− λ) f
(
x′
)
≥ λy + (1− λ) y′

∀λ ∈ [0, 1]. But since f is concave

f
[
λx+ (1− λ)x′

]
≥ λf (x) + (1− λ) f

(
x′
)
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∀λ ∈ [0, 1]. Hence

f
[
λx+ (1− λ)x′

]
≥ λy + (1− λ) y′

∀λ ∈ [0, 1]. Then [λx+ (1− λ)x′, λy + (1− λ) y′] ∈ HGf , ∀λ ∈ [0, 1] . Since this is true for all

(x, y) ∈ HGf and (x′, y′) ∈ HGf it follows that HGf is a convex set.

In a similar way, the convexity of a function can be characterized through its epigraph.

Theorem 11. A function f : R→ R is convex if and only if its epigraph is a convex set.

The characterizations of concave and convex functions in Theorems 10 and 11, respectively,

are related to the notion of level sets. Level sets are of fundamental relevance in economics, as

stated in Chapter 13 of SB. The level set of f for the value y in the image, written Cf (y), is the

complete set of x ∈ R at which the value of f equals y

Cf (y) = {x ∈ R : f (x) = y} .

Notice that Cf (y) is a subset of R whereas Gf is a subset of R2. Two associated concepts are

the upper and lower level sets

UCf (y) = {x ∈ R : f (x) ≥ y}

LCf (y) = {x ∈ R : f (x) ≤ y} .

The next result relates the concavity of f with UCf (y) , and it follows as a direct corollary of

Theorem 10.

Corollary 12. If f : R→ R is concave then UCf (y) is a convex set for all y in the range of f.

(Check that the upper level sets of f (x) = − |x| are convex sets.) It is important to

stress that the last theorem goes in only one way. To convince yourself consider f (x) = x3. The

range is R and UCf (y) =
{
x ∈ R | x3 ≥ y

}
=
[
y1/3,+∞

)
. So the upper level sets are intervals,

and then convex sets, but the function is not concave. Hence the class of functions which has

convex upper level sets includes, but is not limited to, the concave functions; they are known as

quasi-concave functions and are extremely important in economics (and in your first year at the

PhD!). We will study quasiconcave functions at the end of the course.
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In a similar way, the convexity of f is related with LCf (y) .

Corollary 13. If f : R→ R is convex then LCf (y) is a convex set for all y in the range of f.

Concave Functions on Rn

This section extends the results in the previous one to higher dimensions. Here f : Rn → R. The

graph of f, which we denote Gf , is now a subset of Rn+1

Gf =
{
(y,x) ∈ Rn+1 : y = f (x) ,x ∈ R

}
where xT = (x1, ..., xn) . Some other sets associated with f : Rn → R are the following

1. the level set of f for the value y in the range of f

Cf (y) = {x ∈ Rn : f (x) = y} ;

2. the upper level set of f for the value y in the rang of f

UCf (y) = {x ∈ Rn : f (x) ≥ y} ; and

3. the lower level set of f for the value y in the rang of f

LCf (y) = {x ∈ Rn : f (x) ≤ y} .

When n = 2 the level sets can be visually represented, as they are subsets of R2. [Draw the

level sets, upper level sets and lower level sets of f (x1, x2) = x1x2 and f (x1, x2) = x1+x2

for y = 1/4 and (x1, x2) ∈ [0, 1]2 .]

For higher dimensions the notion of concavity is as follows.

Definition 14. (Concavity in Rn) A function f : Rn → R is concave if and only if

f
[
λx+ (1− λ)x′

]
≥ λf (x) + (1− λ) f

(
x′
)

∀λ ∈ [0, 1] and ∀x,x′ ∈ Rn. For strict concavity replace ≥ by > and [0, 1] by (0, 1) whenever

x 6= x′.
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Example 2. A very important utility function in economics receives the name of Leontief or

"perfect complements" and in its simplest form is given by U : R2+ → R with

U (x1, x2) = min {x1, x2} .

We want to show that this function is concave. Let (x1, x2) ∈ R2+ and (x′1, x′2) ∈ R2+ denote two

arbitrary bundles. Let us define (x′′1, x
′′
2) = λ (x1, x2)+(1− λ) (x′1, x′2) ∈ R2+. There are four cases

to consider: x1 ≥ x2 and x′1 ≥ x′2; x1 ≥ x2 and x′1 ≤ x′2; x1 ≤ x2 and x′1 ≥ x′2; and x1 ≤ x2 and

x′1 ≤ x′2. We next check that the required condition for concavity holds in the first case.

Select an arbitrary λ in [0, 1] . Assume x1 ≥ x2 and x′1 ≥ x′2. Then U (x1, x2) = x2 and

U (x′1, x
′
2) = x′2. In addition,

x′′1 = λx1 + (1− λ)x′1 ≥ λx2 + (1− λ)x′2 = x′′2.

Therefore U (x′′1, x
′′
2) = x′′2. As a consequence,

U
(
x′′1, x

′′
2

)
= x′′2 = λx2 + (1− λ)x′2 = λU (x1, x2) + (1− λ)U

(
x′1, x

′
2

)
.

Since λ was arbitrarily selected, the claim follows. (Check the other three cases.) N

It is still true that concavity implies continuity, but it does not imply differentiability. How-

ever, if the function is continuously differentiable then there are other alternative characterizations

of this property. We next relate concavity with first-order derivatives.

Theorem 15. Suppose f : Rn → R is C1. Then f is concave if and only if

f
(
x′
)
+Df

(
x′
) (
x− x′

)
≥ f (x)

∀x,x′ ∈ Rn. For strict concavity replace ≥ by > whenever x 6= x′.

Proof. See Madden (1986, pp. 52-54)

Although the last theorem looks similar to the one-variable analysis, notice that here

Df
(
x′
) (
x− x′

)
=
∑n
i=1

[
∂f
(
x′
)
/∂xi

] (
xi − x′i

)
.

For n = 2 the theorem says that a C1 function of two variables is concave if and only if the

tangent plane to its graph (⊂ R3) at any point lies entirely on or above the graph.
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Now, we relate the concavity of a function f with its second-order derivatives. If the function

is C2 then the next characterization holds.

Theorem 16. Suppose f : Rn → R is C2. Then f is concave if and only if D2f (x) is negative

semi-definite for all x ∈ Rn. Moreover, if D2f (x) is negative definite for all x ∈ Rn, then f is

strict concave.

Proof. See Madden (1986, pp. 52-54)

Example 3. Another very important utility function in economics receives the name of Cobb-

Douglas and in its simplest form is given by U : R2+ → R with

U (x1, x2) = xa1x
b
2

where a, b > 0 and a+ b = 1. This utility function is C2. (Check concavity directly by using

Definition 14, and then by using Theorems 15 and 16.) N

Finally we mention the hypograph (epigraph) characterization of concave (convex) functions.

The hypograph and epigraph of f : Rn → R are

HGf =
{
(y,x) ∈ Rn+1 : y ≤ f (x) for some x ∈ Rn

}
and

EGf =
{
(y,x) ∈ Rn+1 : y ≥ f (x) for some x ∈ Rn

}
respectively. Like Gf , these are subsets of Rn+1. The next theorem states alternative definitions

of concave and convex functions.

Theorem 17. A function f : Rn → R is concave (convex) if and only if HGf (EGf ) is a convex

set.

The next statement is a direct corollary of the previous one.

Corollary 18. If the function f : Rn → R is concave (convex) then UCf (y) (LCf (y)) is a

convex set for all y in the range of f.

(Check that Corollary 18 holds using the utility function in Example 3 above.)
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Convex Domains

The previous sections developed all the results for functions defined on R and on Rn, i.e. f :

R → R and f : Rn → R. The analysis extends immediately (after some changes in notation) to

open and convex domains on R and Rn respectively. Part of the analysis also extends to close

and convex domains on R and Rn respectively. (Open domains are needed for all those results

that involve taking derivatives.)

Properties of the Concave Functions

Beside the previous characterizations, concave functions have some additional nice properties. In

some cases, these properties help to check whether a given function is, in fact, concave.

Theorem 19. Suppose D ⊂ Rn is a convex set, and suppose f : D → R and g : D → R are two

functions such that f (x) = kg (x) where k ∈ R. If g is concave then f is concave if k > 0 and

convex if k < 0.

Proof. (Show this result.)

Moreover, the sum of concave functions is always concave.

Theorem 20. Suppose D ⊂ Rn is convex and suppose f : D → R and g : D → R are two

concave functions. Then h (x) = f (x) + g (x) is also concave.

Proof. (Show this result.)

Let us finally consider functions of functions, i.e. f (x) = h [g (x)] . To be precise suppose

g : D → R where D ⊂ Rn has range E ⊂ R, and suppose that h : E → R. Then f is defined by

f : D → R with values f (x) = h [g (x)] .

The last result involves the notion of monotone increasing transformations (often called

monotonic transformations). (Note 10 elaborates more on this concept.)

Definition 21. Let I be an interval of the real line. Then h : I → R is a monotone increasing

transformation of I if h is a strictly increasing function on I. Furthermore, if h is a monotone
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increasing transformation and g is a real-valued function of n variables, then we say that

h (g) : x→ h [g (x)]

is a monotone increasing transformation of g.

The next theorem states that any monotone increasing transformation of a concave function

is concave if the monotone transformation is itself a concave function.

Theorem 22. Suppose D ⊂ Rn is convex, suppose g : D → R has range E, and h : E → R.

Define f : D → R by f (x) = h [g (x)] . If h is monotone increasing and concave, and g is concave,

then f is concave.

[Use Theorem 22 and the main result of Example 2 to show that V : R2+ → R with

V (x1, x2) = ln (min {x1, x2}) is a concave function.]
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