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Note 4: Quadratic Forms

Note 4 is based on Searle and Willett (2001) and Simon and Blume (1994, Ch. 16).

Quadratic Forms in Economics

Quadratic forms are important in testing the second order conditions that distinguish maxima

from minima in economic optimization problems, in checking the concavity of functions that are

twice continuously differentiable and in the theory of variance in statistics. Like linear functions,

quadratic forms have matrix representations. So studying the properties of quadratic forms

reduces to studying properties of a symmetric matrix.

Let us discuss two examples before formalizing the concept. The first example sheds light on

the relevance of quadratic forms; the second one describes an economic application.

Example 1. The simplest functions with a unique global extremum are the pure quadratics

y = x2 and y = −x2. The former has a global minimum at x = 0; and the latter has a global

maximum at x = 0. N

Example 2. One simple production function in economics takes the form

y = θ + λ1x1 + λ2x2 + a11x
2
1 + a22x

2
2 + a12x1x2

where y is an output and x1 and x2 are two inputs. This can be written as

y = θ +
(
λ1 λ2

) x1

x2

+ ( x1 x2

) a11
1
2a12

1
2a12 a22

 x1

x2


= θ + λTx+ xTAx.

Here xTAx is called a quadratic form. N
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Definition of Quadratic Forms

The definition below formalizes de concept of quadratic form.

Definition 1. A quadratic form on Rn is a real-valued function Q : Rn → R of the form

Q (x1, ..., xn) =
∑n
i,j=1 aijxixj = x

TAx (1)

in which each term is a monomial of degree two, where xT = (x1, ..., xn) and A = {aij} for

i = 1, 2, ..., n and j = 1, 2, ..., n.

By definition, the matrix A in (1) is always a square matrix. As we argue next, this matrix

can also be taken as symmetric. If xTBx is a quadratic form, then the next equalities apply

xTBx =
(
xTBx

)T
= xTBTx

=
1

2

(
xTBTx+ xTBTx

)
=

1

2

(
xTBx+ xTBTx

)
= xT

[
1

2

(
B +BT

)]
x

= xTAx.

Here A = 1
2

(
B +BT

)
which is obviously symmetric. (Justify each of the previous equali-

ties.) This means that every quadratic form xTBx can be written as xTAx with A symmetric.

Definiteness of Quadratic Forms

A quadratic form always takes on the value zero at the point x = 0. Its distinguishing character-

istic is the set of values it takes when x 6= 0.

The general quadratic form of one variable is y = ax2. If a > 0, then ax2 is always ≥ 0

and equals 0 only when x = 0. Such a form is called positive definite, and x = 0 is its global

minimizer. If a < 0, then ax2 is always ≤ 0 and equals 0 only when x = 0. Such a form is called

negative definite, and x = 0 is its global maximizer.

In two dimensions, the quadratic form Q1 (x1, x2) = x21 + x22 is always greater than zero at

(x1, x2) 6= (0, 0) . Then, we call Q1 positive definite. Quadratic forms as Q2 (x1, x2) = −x21 − x22,
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which are strictly negative except at the origin, are called negative definite. Quadratic forms like

Q3 (x1, x2) = x21 − x22, which take on both positive and negative values are called indefinite.

There are two intermediate cases. Quadratic forms which are always greater than or equal to

zero, but may equal zero at some nonzero x′s are called positive semi-definite. For instance,

Q4 (x1, x2) = (x1 + x2)
2 = x21 + 2x1x2 + x

2
2

which is never negative, but which equals zero at nonzero points such as (x1, x2) = (1,−1) . A

quadratic form like Q5 (x1, x2) = − (x1 + x2)2 , which is never positive but can be zero at points

other than the origin, is called negative semi-definite.

As we showed, quadratic forms are always associated to symmetric matrices. It is then non

surprising that a symmetric matrix A is called positive definite, positive semi-definite, negative

definite, negative semi-definite or indefinite according to the definiteness of the corresponding

quadratic form Q (x) = xTAx.

The next definition extends these concepts to higher dimensions.

Definition 2. (Definiteness) Let A be an n × n symmetric matrix and x an n-dimensional

vector, then A is

(a) positive definite if xTAx > 0 for all x 6= 0;

(b) positive semi-definite if xTAx ≥ 0 for all x;

(c) negative definite if xTAx < 0 for all x 6= 0; and

(d) negative semi-definite if xTAx ≤ 0 for all x.

Example 3. Let A =

 4 2

2 1

 . Then,

xTAx =
(
x1 x2

) 4 2

2 1

 x1

x2

 = 4x21 + 4x1x2 + x
2
2.

Since 4x21 + 4x1x2 + x
2
2 = (2x1 + x2)

2, it follows that xTAx ≥ 0 for all x. In addition, xTAx = 0

when x = (−1, 2) 6= (0, 0) . Therefore A is positive semi-definite. N
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In the last example it was quite easy to address the definiteness of matrix A. In higher

dimensions, checking this property is often quite involved. Fortunately, there are techniques

based on specific determinants that help us to do so.

Characterization through Determinants

We next characterize the definiteness of a matrix through its principal minors.

Definition 3. (Principals and principal minors) Let A be an n × n matrix. A k × k

submatrix of A formed by deleting n − k columns and the same n − k rows from A is called a

kth order principal submatrix of A. The determinant of a k × k principal submatrix is called a

kth order principal minor of A.

(Leading principals and leading principal minors) Let A be an n× n matrix. The kth

order principal submatrix of A, with 1 ≤ k ≤ n, obtained by deleting the last n− k rows and the

last n− k columns from A is called the kth leading principal submatrix of A. Its determinant is

called the kth leading principal minor of A. We denote the former by Ak, and the latter by |Ak|.

The next theorem uses Definition 3 to characterize the definiteness of a matrix.

Theorem 4. Let A be an n× n matrix. Then,

(a) A is positive definite if and only if its n leading principal minors are strictly positive;

(b) A is negative definite if and only if, for k = 1, ..., n, the kth leading principal minors have

the same sign as (−1)k, that is,

|A1| < 0, |A2| > 0, |A3| < 0, etc.;

(c) A is positive semi-definite if and only if all its principal minors are ≥ 0; and

(d) A is negative semi-definite if and only if every principal minor of odd order is ≤ 0 and every

principal minor of even order is ≥ 0.

Remark. The condition in part (b) can be written as (−1)k |Ak| > 0 for k = 1, ..., n.
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Proof. See SB pp. 394-395.

Example 4. Consider the following matrix

A =


−3 0 0

0 0 0

0 0 −1

 .

Its leading principal submatrices are

A1 = −3, A2 =

 −3 0

0 0

 and A3 =


−3 0 0

0 0 0

0 0 −1

 .

Therefore, its leading principal minors are |A1| = −3, |A2| = 0, and |A3| = 0. It follows that

A is neither negative nor positive definite. (Check whether the matrix is negative semi-

definite.) N

(Offer a precise characterization of positive and negative definite diagonal matri-

ces. Repeat it for 2× 2 matrices.)

Quadratic Forms with Linear Constraints

Determining the definiteness of a quadratic form Q (x) is equivalent to determining whether x = 0

is a maximum, a minimum or neither for the real-valued function Q. Specifically, x = 0 is the

unique global minimum of a quadratic form Q if and only if Q is positive definite. Similarly,

x = 0 is the unique global maximum if and only if Q is negative definite.

The characterization of quadratic forms in Theorem 4 works only when there are no constraints

in the problem under consideration, that is, if x can take on any value on Rn. If there are

constraints the analysis becomes more delicate.

Example 5. Let us consider again the quadratic form Q3 (x1, x2) = x21−x22, which takes on both

positive and negative values and is thereby indefinite; the origin is neither a maximum nor a mini-

mum. But if we restrict attention to the x1−axis, that is, if we impose x2 = 0, then Q3 (x1, 0) = x21

has a strict global minimum at x1 = 0. On the constraint set
{
(x1, x2) ∈ R2 : x2 = 0

}
the
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quadratic form Q3 is positive definite. Alternatively, if we restrict attention to the x2−axis, that

is, if we impose x1 = 0, then Q3 (0, x2) = −x22 has a strict global maximum at x2 = 0. On the

constraint set
{
(x1, x2) ∈ R2 : x1 = 0

}
the quadratic form Q3 is negative definite. N

Let us extend Example 5. Suppose we want to determine the definiteness of a general quadratic

form of two variables

Q (x1, x2) = ax21 + 2bx1x2 + cx
2
2 = (x1 x2)

 a b

b c

 x1

x2

 (2)

on the general linear subspace

Ax1 +Bx2 = 0. (3)

The simplest approach is to solve (2) for x1 in terms of x2. By (3) we know that x1 = −(B/A)x2.

Substituting the latter in (2) and simplifying we get

Q

(
−B
A
x2, x2

)
=
aB2 − 2bAB + cA2

A2
x22. (4)

We conclude that Q is positive definite on the constraint if and only if aB2 − 2bAB + cA2 > 0,

and negative definite on the constraint if and only if aB2−2bAB+cA2 < 0. There is a convenient

way of rewriting this expression

aB2 − 2bAB + cA2 = −

∣∣∣∣∣∣∣∣∣


0 A B

A a b

B b c


∣∣∣∣∣∣∣∣∣ . (5)

The matrix in (5) is obtained by "bordering" the 2× 2 matrix in (2) on the top and left by the

coeffi cients of the linear constraint (3). The next theorem captures these observations.

Theorem 5. The quadratic form Q (x1, x2) = ax21 + 2bx1x2 + cx
2
2 is positive (negative) definite

on the constraint set Ax1 +Bx2 = 0 if and only if∣∣∣∣∣∣∣∣∣


0 A B

A a b

B b c


∣∣∣∣∣∣∣∣∣ (6)

is strictly negative (positive).
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A similar result holds for the general problem of determining the definiteness of

Q (x) = xTAx =
(
x1 ... xn

)
a11 ... a1n
...

. . .
...

an1 ... ann




x1
...

xn

 (7)

on the linear constraint

Bx =


B11 ... B1n
...

. . .
...

Bm1 ... Bmn




x1
...

xn

 =


0
...

0

 . (8)

We border the matrix of the quadratic form (7) on the top and on the left by the coeffi cient

matrix of the linear constraint (8)

H =



0 ... 0
...

. . .
...

0 ... 0

B11 ... Bm1
...

. . .
...

B1n ... Bmn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B11 ... B1n
...

. . .
...

Bm1 ... Bmn

a11 ... a1n
...

. . .
...

an1 ... ann


and address the definiteness of the quadratic form on the linear constraint by studying specific

features of H, that we describe in the next theorem.

Theorem 6. To determine the definiteness of a quadratic form of n variables Q (x) = xTAx,

when restricted to the constraint set given by m linear equations Bx = 0, you should proceed as

follows. First, construct the (n+m)× (n+m) symmetric matrix H by bordering the matrix A

above and to the left by the coeffi cient matrix B of the linear constraints

H =

 0 B

BT A

 .

Then, check the signs of the last n−m leading principal minors ofH, starting with the determinant

of H itself. There are three possibilities
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(a) if |H| has the same sign as (−1)n and if these last n−m leading principal minors alternate

in sign, then Q is negative definite on the constraint set Bx = 0, and x = 0 is a strict global

maximum of Q on this constraint set;

(b) if |H| and the last n−m leading principal minors all have the same sign as (−1)m, then Q

is positive definite on the constraint set Bx = 0, and x = 0 is a strict global minimum of

Q on this constraint set; and

(c) if (a) and (b) are violated by nonzero leading principal minors, then Q is indefinite on

the constraint set Bx = 0, and x = 0 is neither a maximum nor a minimum of Q on this

constraint set.
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