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Note 2: Differential Calculus

Note 2 is based on de la Fuente (2000, Ch. 4) and Simon and Blume (1994, Ch. 14).

This note introduces the concept of differentiability and discusses some of its main implica-

tions. We start with real-valued functions of only one argument, and then extend the notion of

differentiability to multivalued functions. The key to the extension lies in the interpretation of

differentiability in terms of the existence of a "good" linear approximation to a function around

a point. We also show that important aspects of the local behavior of "suffi ciently differen-

tiable" functions are captured accurately by linear or quadratic approximations. The material

has important applications to optimization and comparative statics.

Differentiability of Univariate Real-Valued Functions

Differentiability and Taylor’s Expansion

Let f be a univariate real-valued function, f : R→ R. The concept of differentiability relates to

the notion of slope of a function at a point x. Given a second point y in the domain of f , the

difference quotient [f (y)− f (x)] / (y − x) gives the slope of a secant to the function through the

points [x, f (x)] and [y, f (y)] . As we take points y closer and closer to x, the secant becomes a

better approximation to the tangent to the graph of f at the point [x, f (x)], and in the limit the

two coincide. Thus, we can define the derivative of f at x as the limit

f ′ (x) = limy→x
f (y)− f (x)

y − x = limh→0
f (x+ h)− f (x)

h
with h ∈ R

whenever it exists, and we can interpret it as the slope of the function at this point.

Definition 1. (Derivative of a univariate function) Let f : R → R. We say that f is

differentiable at a point x if the following limit exists

limh→0
f (x+ h)− f (x)

h
with h ∈ R.
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When it does exist, we say the value of the limit is the derivative of f at x, written f ′ (x), Df (x)

or Dxf (x) . If f is differentiable at each point in its domain, we say the function is differentiable.

The value of differentiable functions around some initial point can be nicely approximated

through Taylor’s expansion.

Theorem 2. (Taylor’s formula for univariate functions) Let f : R → R be n times

differentiable. For all x and x+ h in the real line we have

f (x+ h) = f (x) +
∑n−1

k=1

f (k) (x)

k!
hk +Rn (h)

where f (k) (x) is the kth derivative of f evaluated at x, and the remainder or error term Rn (h)

is of the form

Rn (h) =
f (n) (x+ λh)

n!
hn

for some λ ∈ (0, 1). That is, remainder has the same form as the other terms except that the nth

derivative is evaluated at some point between x and x+ h.

Proof. Put y = x+ h and define the function F (z) for z between x and y by

F (z) = f (y)− f (z)−
∑n−1

k=1

f (k) (z)

k!
(y − z)k .

Then the theorem says that for some point x+ λ (y − x) between x and y

F (x) =
f (n) [x+ λ (y − x)]

n!
(y − x)n .

First, observe that F (y) = 0 and that most terms in

F ′ (z) = −f ′ (z)−
∑n−1

k=1

[
f (k) (z)

k!
k (y − z)k−1 (−1) + f (k+1) (z)

k!
(y − z)k

]

= −f ′ (z)−
∑n−1

k=1

[
f (k+1) (z)

k!
(y − z)k − f (k) (z)

k!
k (y − z)k−1

]

cancel, leaving us with

F ′ (z) = − f
(n) (z)

(n− 1)! (y − z)
n−1 . (1)

Next we define the function

G (z) = F (z)−
(
y − z
y − x

)n
F (x)
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and observe that G is a continuous function on the open interval (x, y) , with

G (y) = F (y)− 0 = 0 = F (x)− F (x) = G (x)

and

G′ (z) = F ′ (z)− n
(
y − z
y − x

)n−1 −1
y − xF (x) . (2)

By Rolle’s Theorem (see SB, p. 824), there exists some λ ∈ (0, 1) such that

G′ [x+ λ (y − x)] = 0.

Expanding that expression using (1) and (2), we get

0 = G′ [x+ λ (y − x)] = F ′ [x+ λ (y − x)] + n
(
y − x− λ (y − x)

y − x

)n−1 1

y − xF (x)

=⇒ f (n) [x+ λ (y − x)]
(n− 1)! [y − x− λ (y − x)]n−1 = n

(
(1− λ) (y − x)

y − x

)n−1 1

y − xF (x)

=⇒ f (n) [x+ λ (y − x)]
(n− 1)! [(1− λ) (y − x)]n−1 = n (1− λ)n−1 1

y − xF (x)

=⇒ f (n) [x+ λ (y − x)]
n!

(y − x)n = F (x)

which is the desired result.

Taylor’s theorem gives us a formula for constructing a polynomial approximation to a differ-

entiable function. If we let n = 2, and omitting the remainder, we get

f (x+ h) ∼= f (x) + f ′ (x)h. (3)

The differentiability of f implies that the error term will be small. Hence the linear function in

the right-hand side of (3) is guaranteed to be a decent approximation to f near x. Higher-order

approximations that use more derivatives will be even better.

The Chain Rule

Let g and h be two real-valued functions on R, the function formed by first applying function

g to any number x and then applying function h to the result g (x) is called the composition of

functions g and h and is written as

f (x) = h [g (x)] or f (x) = (h ◦ g) (x) .
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Example 1. The functions which describe a firm’s behavior, such as its profit function π, are

usually written as functions of a firm’s output y. If one wants to study the dependence of a

firm’s profit on the amount of an input x it uses, one must compose the profit function with the

firm’s production function y = f (x). The latter function tells us how much output y the firm

can obtain from x units of the given input. The result is a function

F (x) ≡ π [f (x)] .

For instance, if π (y) = −y4 + 6y2 − 5 and f (x) = 5x2/3, then

F (x) ≡ π [f (x)] = −625x8/3 + 150x4/3 − 5.

Notice that we use different names for π and F as their arguments are different. N

The derivative of a composite function is obtained as the derivative of the outside function

(evaluated at the inside function) times the derivative of the inside function. This general form

is called the Chain Rule.

Theorem 3. (Chain Rule for univariate functions) Let g and h be two real-valued differ-

entiable functions on R, and define f (x) = h [g (x)] . Then

df

dx
(x) = h′ [g (x)] g′ (x) .

Example 2. Consider the model in Example 1. By using the Chain Rule we get

π′ [f (x)] f ′ (x) =
{
−4 [f (x)]3 + 12 [f (x)]

} 10
3
x−1/3

=

[
−4
(
5x2/3

)3
+ 12

(
5x2/3

)] 10
3
x−1/3

=
(
−500x2 + 60x2/3

) 10
3
x−1/3

= −5000
3

x5/3 + 200x1/3.

Note that the latter is equivalent to the derivative of F with respect to x

F ′ (x) = −5000
3

x5/3 + 200x1/3.

This result corroborates the claim in Theorem 3. N
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Differentiability of Multivariate Real-Valued Functions

In this section we study differentiability of functions from Rn into R. We build this concept on

the results derived for real-valued univariate functions.

Partial and Directional Derivatives

To extend the previous concept of differentiability to functions of n variables we need to specify

the direction along which we are approaching x. The problem did not appear before as we can

only approach x from either the left or the right, and the derivative of the univariate function f at

x is defined as the common value of both one-sided limits whenever they coincide. In multivariate

functions however we can approach a point from an infinite number of directions, and therefore we

have to specify the one we are considering. This observation leads us to the concept of directional

derivative, that we formalize next.

Definition 4. (Directional derivative) The directional derivative of f : Rn → R in the

direction of v at the point x is defined by

limh→0
f (x+ hv)

h
with h ∈ R and ‖v‖ = 1

whenever this limit exists.

Directional derivatives in the direction of the coordinate axes are of special interest. The

partial derivative of f with respect to its ith argument is defined as

limh→0
f (x+ hei)

h
with h ∈ R

where ei is a vector whose components are all zero except for the ith one, which is 1.

Definition 5. (Partial derivative) Let f be a multivariate function f : Rn → R. The partial

derivative of f with respect to its ith argument, xi, at a point x, is the limit

∂f (x)

∂xi
= limh→0

f (x1, ..., xi + h, ..., xn)− f (x1, ..., xi, ..., xn)
h

with h ∈ R

whenever it exists. [Other usual ways to write ∂f (x) /∂xi are Dxif (x) and fxi (x) .]
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Example 3. Let us consider the function f (x1, x2) = x21x2 . Its partial derivatives are

∂f1
∂x1

(x1, x2) = 2x1x2 and
∂f1
∂x2

(x1, x2) = x21.

[Calculate the partial derivatives for the function g (x1, x2) = x1x2.] N

Let f : Rn → R, then each one of its partial derivatives ∂f (x) /∂xi is also a real-valued

function of n variables and the partials of ∂f (x) /∂xi can be defined as before. The partials of

∂f (x) /∂xi, for i = 1, ..., n, are the second-order partial derivatives of f.

Differentiability and the Taylor’s Expansion

The main objective is to define a concept of differentiability for multivariate functions f : Rn → R.

We will define differentiability in terms of the possibility of approximating the local behavior of

f through a linear function. After doing this, we will relate the concept of differentiability to the

partial derivatives of f, that we defined in the last sub-section.

Let us think for a moment in the definition of derivative for a function f : R → R. To say f

is differentiable at x, is the same as to say that there exists a real number ax, that we define as

f ′ (x), such that

limh→0
f (x+ h)− [f (x) + axh]

h
= 0. (4)

To interpret this result let us assume that we want to approximate the value of f (x+ h) by

a linear function. One possibility is to use f (x) + f ′ (x)h. Expression (4) guarantees that the

approximation will be good whenever h is small. [If we define E (h) = f (x+ h) − [f (x) + axh]

as the error of the linear approximation, then condition (4) ensures limh→0E (h) /h = 0.]

There is no diffi culty in extending this notion of differentiability to mappings from Rn to R.

Before giving a formal definition, we want to emphasize the importance of differentiability for

our purposes:

Because differentiable functions admit good linear approximations, so do differen-

tiable models. This gives us a tractable way to analyze them. When we use calculus

to study a nonlinear model, we are in fact constructing a linear approximation to

it in some neighborhood of a point of interest. The assumption that the behavioral

functions in the model are differentiable means that the approximation error is small.
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The obvious limitation is that it generally yields only local results, valid only in some

small neighborhood of the initial solution.

The formal definition of differentiability is as follows.

Definition 6. (Differentiability of multivariate functions) A function f : Rn → R is

differentiable at x if there exists a vector ax in Rn such that

lim‖h‖→0

∣∣f (x+ h)− [f (x) + aTxh]∣∣
‖h‖ = 0 (5)

where h ∈ Rn and ‖·‖ is the Euclidean norm of a vector, ‖x‖ =
√∑n

i=1 (xi)
2. If f is differentiable

at every point in its domain, we say that f is differentiable.

If f is differentiable, then we can define its derivative as the function

Dxf : Rn → ax

that goes from Rn to an n-dimensional vector ax. When it is clear from the context that we are

differentiating with respect to the vector x we will write Df instead of Dxf.

It is apparent now that we can, as in the case of a univariate real-valued function, interpret the

differential in terms of a linear approximation to f (x+ h). That is, we can consider f (x)+ aTxh

as a linear approximation of f (x+ h). Expression (5) guarantees that the approximation will

be good whenever h is small. [If we define E (h) = f (x+ h)−
[
f (x) + aTxh

]
as the error of the

linear approximation, then condition (4) ensures lim‖h‖→0 |E (h)| / ‖h‖ = 0.]

The derivative of f at x, Df (x), relates to the partial derivatives of f at x in a natural way.

If f : Rn → R is differentiable at x then the derivative of f at x is the vector of partial derivatives

Df (x) = Dxf (x) =
[

∂f
∂x1

(x) ∂f
∂x2

(x) ... ∂f
∂xn

(x)
]

that we often call Jacobian of f (evaluated) at x.

Moreover, the differentiability of f is guaranteed if its partial derivatives exist and are smooth.

If the n partial derivatives of a function f : Rn → R exist and are themselves continuous functions

of (x1, ..., xn), we say that f is continuously differentiable or C1. An important result in calculus

states that if f is C1, then f is differentiable [see de la Fuente (2000), pp. 172-175].
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Example 4. Consider the function f (x1, x2) = x21x2 in Example 3. In this case,

Df (x1, x2) =
(
2x1x2 x21

)
.

[Calculate the same concept for the function g (x1, x2) = x1x2.] N

The partials of ∂f (x) /∂xi, for i = 1, ..., n, are the second-order partial derivative of f that

we identify by

D2f (x) = D2
xf (x) =



∂2f
∂x21

(x) ∂2f
∂x2∂x1

(x) ... ∂2f
∂xn∂x1

(x)

∂2f
∂x1∂x2

(x) ∂2f
∂x22

(x) ... ∂2f
∂xn∂x2

(x)

...
...

. . .
...

∂2f
∂x1∂xn

(x) ∂2f
∂x2∂xn

(x) ... ∂2f
∂x2n

(x)


.

This is an n × n matrix, often called Hessian matrix of f (evaluated) at x. If all these n2

partial derivatives exist and are themselves continuous functions of (x1, ..., xn) , we say that f

is twice continuously differentiable or C2. Young’s theorem states that if f is twice continuously

differentiable, then D2f (x) is a symmetric matrix.

Theorem 7. (Young’s theorem) Assume a function f : Rn → R is C2 on an open subset

U ⊆ Rn. Then, for all x ∈ U and all i, j = 1, ..., n,

∂2f

∂xi∂xj
(x) =

∂2f

∂xj∂xi
(x) .

[Check Young’s theorem with the function f1 (x1, x2) = x21x2 in Example 3.]

Taylor’s formula can be generalized to the case of a real-valued function of n variables. Because

the notation gets messy, and we will only use the simplest case, we will state the following theorem

for the case of a first order approximation with a quadratic form remainder.

Theorem 8. (Taylor’s formula for multivariate functions) Let f : Rn → R be a C2

function. If x and x+ h are in Rn, then

f (x+ h) = f (x) +Df (x)h+ (1/2)hTD2f (x+ λh)h

for some λ ∈ (0, 1) .

We will use Theorem 8 to prove the suffi cient conditions for maxima in optimization problems.
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The Chain Rule

In many cases we are interested in the derivatives of composite functions. The following result

says that the composition of differentiable functions is differentiable, and its derivative is the

product of the derivatives of the original functions.

Theorem 9. (Chain rule for multivariate functions) Let g and h be two functions with

g : Rn → R and h : R→ R

and define f (x) = h [g (x)] or f (x) = (h ◦ g) (x) with f : Rn → R. If g and h are differentiable,

then f = h ◦ g is differentiable and

Df (x) = Dh [g (x)]Dg (x) .

Proof. See de la Fuente (2000), pp. 176-178. (They provide a proof for a result that is more

general than the statement in Theorem 9.)

The next example sheds light on the implementation of the last result.

Example 5. Let f (x1, x2) = (x1x2)
2. We want to use the Chain Rule to find ∂f/∂x1 and

∂f/∂x2. To this end, let us define

g (x1, x2) = x1x2 and h (y) = y2.

Notice that f (x1, x2) = (h ◦ g) (x1, x2) . By the Chain Rule we have that

Df (x1, x2) = Dh [g (x1, x2)]Dg (x1, x2)

= 2g (x1, x2)
(
x2 x1

)
= 2x1x2

(
x2 x1

)
=

(
2x1x

2
2 2x21x2

)
.

[Check the result directly, by differentiating f (x1, x2) with respect to x1 and x2.] N
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Differentiability of Functions from Rn into Rm

We now turn to the general case where f : Rn → Rm is a function of n variables whose value is

a vector of m elements. As we learned in Note 1, we can think of the mapping f as a vector of

component functions fi, each of which is a real-valued function of n variables

f = (f1, f2, ..., fm)
T with fi : Rn → R for i = 1, ...,m.

Thinking in this way, the extension is trivial (although the notation becomes messier!).

Definition 10. (Differentiability of functions of Rn to Rm) A function f : Rn → Rm is

differentiable at x if there exists a matrix Ax such that

lim‖h‖→0
‖f (x+ h)− [f (x) +Axh]‖

‖h‖ = 0 (6)

where h ∈ Rn and ‖·‖ is the Euclidean norm of a vector, ‖x‖ =
√∑n

i=1 (xi)
2. If f is differentiable

at every point in its domain, we say that f is differentiable.

If f is differentiable, then we can define its derivative as the function

Df = Dxf : Rn → Ax

that goes from Rn to an m× n matrix Ax.

Here again, the derivative of f at x, Df (x), relates to the partial derivatives of f at x. If

f : Rn → Rm is differentiable at x, then the derivative of f at x is the matrix of partial derivatives

Df (x) = Dxf (x) =


Df1 (x)

Df2 (x)
...

Dfm (x)

 =



∂f1
∂x1

(x) ∂f1
∂x2

(x) ... ∂f1
∂xn

(x)

∂f2
∂x1

(x) ∂f2
∂x2

(x) ... ∂f2
∂xn

(x)
...

...
. . .

...
∂fm
∂x1

(x) ∂fm
∂x2

(x) ... ∂fm
∂xn

(x)

 .

that we often call Jacobian matrix of f (evaluated) at x. If the partial derivatives of the component

functions f1, f2, ..., fm exist and are continuous, then f is differentiable [see de la Fuente (2000),

pp. 172-175].
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Example 6. Consider the functions f1 (x1, x2) = x21x2 and f2 (x1, x2) = ln (x1 + x2) . Its partial

derivatives are

∂f1
∂x1

(x1, x2) = 2x1x2,
∂f1
∂x2

(x1, x2) = x21,
∂f2
∂x1

(x1, x2) =
1

x1 + x2
and

∂f2
∂x2

(x1, x2) =
1

x1 + x2
.

Therefore,

Df1 (x1, x2) =
(
2x1x2 x21

)
and Df2 (x1, x2) =

(
1

x1+x2
1

x1+x2

)
.

If we let f = (f1, f2)
T , then

Df (x)

 2x1x2 x21
1

x1+x2
1

x1+x2

 .

[Calculate the same concepts for the functions g1 (x1, x2) = x1x2 and g2 (x1, x2) =

ln (2x1 + 3x2) .] N

The following result states again that the composition of differentiable functions is differen-

tiable, and its derivative is the product of the derivatives of the original functions.

Theorem 9. (Chain rule for multivariate functions) Let g and h be two functions with

g : Rn → Rm and h : Rm → Rp

and define f (x) = h [g (x)] or f (x) = (h ◦ g) (x) with f : Rn → Rp. If g and h are differentiable,

then f = h ◦ g is differentiable and

Df (x) = Dh [g (x)]Dg (x) .

Proof. See de la Fuente (2000), pp. 176-178.

The last example applies the Chain Rule to a case where n = m = 3 and p = 1.

Example 7. Let l = xy2z, with

x = r + t, y = s and z = s+ t.

We want to use the Chain Rule to address ∂l/∂r, ∂l/∂s and ∂l/∂t.
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Let us define g = (g1, g2, g3)
T , with gi : R3 → R for i = 1, 2, 3, as follows

g1 (r, s, t) = r + t

g2 (r, s, t) = s

g3 (r, s, t) = s+ t.

Then g : R3 → R3. In addition, let h : R3 → R be defined as h (x, y, z) = xy2z. Then l =

f (r, s, t) = h [g (r, s, t)]. Notice that

Dg (r, s, t) =


1 0 1

0 1 0

0 1 1

 , g (r, s, t) = ( r + t s s+ t
)

Dh (x, y, z) =
(
y2z 2xyz xy2

)
.

It follows that

Dh [g (r, s, t)] =
[
s2 (s+ t) 2 (r + t) s (s+ t) (r + t) s2

]
.

By the Chain Rule

Df (r, s, t) = Dh [g (r, s, t)]Dg (r, s, t)

=
[
s2 (s+ t) 2 (r + t) s (s+ t) (r + t) s2

]
1 0 1

0 1 0

0 1 1


=

[
s2 (s+ t) s (r + t) (3s+ 2t) s2 (r + s+ 2t)

]
.

[Check the result directly, by obtaining an expression for l = f (r, s, t) in terms of r, s

and t and taking the partial derivatives.] N
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