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Note 10: Quasiconcave and Pseudoconcave Functions

Note 10 is based on Madden (1986, Ch. 13, 14) and Simon and Blume (1994, Ch. 21).

Monotonic transformations: Cardinal Versus Ordinal Utility

A utility function could be said to measure the level of satisfaction associated to each commodity

bundle. Nowadays, no economist really believes that a real number can be assigned to each

commodity bundle which expresses (in utils?) the consumer’s level of satisfaction with this bundle.

Economists believe that consumers have well-behaved preferences over bundles and that, given

any two bundles, a consumer can indicate a preference of one over the other or the indifference

between the two. Although economists work with utility functions, they are concerned with the

level sets of such functions, not with the number that the utility function assigns to any given

level set. In consumer theory these level sets are called indifference curves. A property of utility

functions is called ordinal if it depends only on the shape and location of a consumer’s indifference

curves. It is alternatively called cardinal if it also depends on the actual amount of utility the

utility function assigns to each indifference set.

In the modern approach, we say that two utility functions are equivalent if they have the same

indifference sets, although they may assign different numbers to each level set. For instance, let

u : R2+ → R where u (x) = x1x2 be a utility function, and let v : R2+ → R be the utility function

v (x) = u (x) + 1. These two utility functions represent the same preferences and are therefore

equivalent. Here v is just a monotonic transformation of u.

Definition 1. (Monotonic transformation) Let I be an interval of the real line. Then g :

I → R is a monotonic transformation of I if g is a strictly increasing function on I. Furthermore,

if g is a monotonic transformation and u is a real-valued function of n variables, then we say that

g (u) : x→ g [u (x)]

is a monotonic transformation of u.
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If g is differentiable, then it is a monotonic transformation if g′ (x) > 0 for all x ∈ I. (Show

that the functions 3z + 2, z4 and ln z are monotonic transformations of R++.)

We next define ordinal properties in a precise way.

Definition 2. (Ordinal property) A characteristic of a function is called ordinal if every

monotonic transformation of a function with this characteristic still has this characteristic.

The next example sheds light on this concept.

Example 1. Let u : R2+ → R represent a differentiable utility function. In economics the

marginal rate of substitution (MRS) at a bundle x = x∗ is defined as

∂u

∂x1
(x∗) /

∂u

∂x2
(x∗) .

Let us consider a monotonic transformation of u. In particular, let us define v (x) = g [u (x)] with

g′ (x) > 0 for all x ∈ R2+. At x = x∗ the MRS for v is

g′ [u (x∗)]
∂u

∂x1
(x∗) /g′ [u (x∗)]

∂u

∂x2
(x∗) =

∂u

∂x1
(x∗) /

∂u

∂x2
(x∗)

and coincides with the MRS for u. Therefore, MRS is an ordinal concept. N

Quasiconcave and Pseudoconcave Functions

We showed in previous notes that concavity plays a key role in optimization, as it guarantees that

local and global maxima coincide. Unfortunately, concavity is not an ordinal property and it is

then a very strong assumption in some economic models, e.g. consumer theory. Fortunately, many

of the proofs we provided still hold with weaker inequalities. Quasiconcavity and pseudoconcavity

are two of the most well-known generalizations of concavity with applications in mathematical

economics and mathematical programming. The definition of quasiconcavity is as follows.

Definition 3. (Quasiconcavity) A function f : Rn → R is quasiconcave if, for all x,x′ ∈ Rn

and all λ ∈ [0, 1],

f
[
λx+ (1− λ)x′

]
≥ min

{
f (x) , f

(
x′
)}
.

We say that f is strictly quasiconcave if, for all x,x′ ∈ Rn such that x 6= x′ and all λ ∈ (0, 1) ,

f
[
λx+ (1− λ)x′

]
> min

{
f (x) , f

(
x′
)}
.
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The function f is said to be (strictly) quasiconvex if −f is (strictly) quasiconcave.

There is an alternative characterization of quasiconcavity in terms of upper level sets, that

sheds light on the reason for which this kind of functions is so important in optimization.

Theorem 4. A function f : Rn → R is quasiconcave if and only if UCf (y) is a convex set for

all y in the range of f .

Proof. (Prove this result.)

There are many functions that satisfy Definition 3 (and Theorem 4) but that are not concave,

e.g. f : R → R where f (x) = x3. In Note 5 we described a concave function as a function that

has a convex hypograph and, as a by product of this characteristic, its upper level sets are convex.

The graph of a quasiconcave function need not have the former property. It follows that the class

of quasiconcave functions includes, but is larger than, the class of concave functions.

The geometry of quasiconcave functions can be visualized with f : R2++ → R where f (x) =

x1x2. The range of this function is R++ and for any y ∈ R++, UCf (y) =
{
x ∈ R2++ : x1 ≥ y/x2

}
is certainly a convex set (draw a picture!). However, this function is not concave; for instance

the Hessian is

 0 1

1 0

, which is not negative semi-definite. The visual way to realize about
the latter is with the hypograph of f , which is a subset of R3. To avoid the three dimensional

problem, let us consider x = x1 = x2. The hypograph itself is
{
(y,x) ∈ R3++ : y ≤ x1x2

}
and the

subset of the hypograph where x = x1 = x2 is
{
(y,x) ∈ R3++ : y ≤ x2

}
. It is easy to check that{

(y,x) ∈ R3++ : y ≤ x2
}
is not a convex set, which means that HGf is not convex.

A nice example of a quasiconave function in Statistics is the probability density function of a

random variable that is normally distributed.(Show this statement.)

As in the concave case, the theory of differentiable quasiconcave functions can be very useful.

Theorem 5. Suppose f : Rn → R is C1. Then f is quasiconcave if and only if, for every

x,x′ ∈ Rn,

f (x) ≥ f
(
x′
)
implies Df

(
x′
) (
x− x′

)
≥ 0.

If, moreover,

x 6= x′ and f (x) ≥ f
(
x′
)
implies Df

(
x′
) (
x− x′

)
> 0
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then f is strictly quasiconcave, but the converse statement is not necessarily true.

Proof. See Madden (1986, pp. 210-211).

There are also some useful second-derivative characterizations of quasiconcavity.

Theorem 6. Let f : D → R be a C2 function defined on an open and convex set D ⊆ Rn, and

let us define the following bordered Hessian matrix

H ′r =


0 ∂f

∂x1
. . . ∂f

∂xr

∂f
∂x1

∂2f
∂x21

. . . ∂2f
∂x1∂xr

...
...

. . .
...

∂f
∂xr

∂2f
∂xr∂x1

. . . ∂2f
∂x2r

 .

(a) A necessary condition for the quasiconcavity of f is that

(−1)r
∣∣H ′r∣∣ ≥ 0 for all r = 1, ..., n and all x ∈ D.

(b) A suffi cient condition for the quasiconcavity of f is that

(−1)r
∣∣H ′r∣∣ > 0 for all r = 1, ..., n and all x ∈ Rn+.

(c) If D ⊆ Rn++, f is monotonically increasing and

(−1)r
∣∣H ′r∣∣ > 0 for all r = 1, ..., n and all x ∈ D

then f is strictly quasiconcave.

Let f be a C1 quasiconcave function, and x and x′ two points in its domain with f (x) ≥ f (x′) .

Theorem 5 above says that the directional derivative of f at the "lower" point, x′, in the direction

of the "higher" point, x, in nonnegative. Roughly speaking, the derivative gives us the correct

signal about the direction of change of the function, which is quite helpful when looking for

a maximum. Notice, however, that plain quasiconcavity is compatible with a zero directional

derivative at x′ even if f (x) > f (x′). Hence, a zero gradient could send the wrong signal

that x′ is a candidate for a maximum. Strict quasiconcavity rules out this possibility, as does

pseudoconcavity a concept we now define.
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Definition 7. (Pseudoconcavity) A C1 function f : Rn → R is pseudoconcave if for every

x,x′ ∈ Rn we have

f (x) > f
(
x′
)
implies Df

(
x′
) (
x− x′

)
> 0 (1)

or, equivalently,

Df
(
x′
) (
x− x′

)
≤ 0 implies f (x) ≤ f

(
x′
)
. (2)

The function f is said to be pseudoconvex if −f is pseudoconcave.

A pseudoconcave function can be characterized as a quasiconcave function having a maximum

at x∗ whenever Df (x∗) = (0, ..., 0) .

Note that strict quasiconcavity implies pseudoconcavity, but quasiconcavity does not.

Remark. It can be shown that for nonstationary functions, quasiconcavity does in fact imply

pseudoconcavity.

Some Properties of Quasiconcave Functions

Quasiconcavity is often hard to prove. The following composition results simplify the test in some

circumstances.

Theorem 8. Suppose f : Rn → R and g : Rn → R are two functions such that f (x) = kg (x)

where k ∈ R. If g is quasiconcave then f is quasiconcave if k > 0 and quasiconvex if k < 0.

Proof. (Show this result.)

What is a bit surprising is that the sum of quasiconcave functions need not be quasiconcave.

(For instance, suppose h (x) = x3+x and g (x) = −2x, both with domains R. Show that

h (x) and g (x) are both quasiconcave, while h (x) + g (x) is not.)

Let us now consider functions of functions, i.e. f (x) = h [g (x)] . To be precise suppose

g : D → R where D ⊂ Rn has range E ⊂ R, and suppose that h : E → R. Then f is defined by

f : D → R with values f (x) = h [g (x)] .

The next theorem states that any monotonic transformation of a quasiconcave function is

quasiconcave. This means that quasiconcavity is in fact an ordinal property!
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Theorem 9. Suppose D ⊂ Rn is convex, g : D → R has range E and h : E → R. Define

f : D → R by f (x) = h [g (x)] . If h is a monotonic transformation and g is quasiconcave, then f

is quasiconcave.

The operation of taking monotonic transformations of a function has the important property

of leaving the level sets unchanged in a certain sense. The proof of the previous theorem follows

as a direct implication of the next result.

Theorem 10. If f is a monotonic transformation (h) of the function g (under the assumptions

of Theorem 9 above) then for all y in the range of g we get UCg (y) = UCf [h (y)], LCg (y) =

LCf [h (y)] and Cg (y) = Cf [h (y)] .

Proof. To show the first statement recall that UCg (y) = {x ∈ D : g (x) ≥ y} , and UCf [h (y)] =

{x ∈ D : f (x) = h [g (x)] ≥ h (y)} . Since h is monotone increasing, h [g (x)] ≥ h (y) if and only if

g (x) ≥ y. Hence UCf [h (y)] = {x ∈ D : g (x) ≥ y} = UCg (y) . The other two claims are similar.

When a function undergoes a monotonic transformation, its level map remains the same,

except that the value labelling on a level set changes from y to h (y) . Similarly for upper and

lower level sets. Theorem 9 is an immediate implication of this result. If g is quasiconcave, then

UCg (y) is a convex set. By Theorem 10 the upper level sets of f are the same as those of g

(except for the labelling) and therefore must be convex sets. So f is quasiconcave.

Consider for instance a function f : Rn++ → R where f (x) =
(∑n

i=1 x
1/2
i

)2
. Define g : Rn++ →

R by g (x) =
∑n
i=1 x

1/2
i and h : R++ → R by h (y) = y2. Now g (.) is a concave function (and

then quasiconcave), and h is a monotonic transformation. Then f is a quasiconcave function.
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