Anti-local contexts improve the overall speed of dependency completion

Matthew Wagers
Department of Linguistics
University of California, Santa Cruz
Goal

• What is the relation between predictive forces in language comprehension and the concept of focal attention?
Focal attention

• … is extremely limited

For sequentially-presented information, the capacity of focal attention appears limited to the last “unit” processed (Wickelgren et al., 1980; Garavan, 1998; Cowan, 2001; McElree, 2006; Jonides et al., 2008).

Building structured representations for sequentially-presented input will often require shunting information between memory and focal attention.
Longer == easier

- Anti-local contexts

Longer can be easier.

E.g., Jaeger, Fedorenko & Gibson, submitted

The understudy that the agent telephoned about the job in Los Angeles shared the story …
Question

• Today’s investigation

• What is the nature of anti-local facilitation?

 • RT facilitation is fed by many factors: strength of underlying encoding, speed of processing, etc. etc.

 • Which one of these changes?

 • Measure directly with S.A.T. response-signal method.
Locality in comprehension

which driver... fainted
Locality in comprehension

which driver fainted

which driver did Sue say fainted
Local is easier

ACCEPTABILITY RATINGS
Sprouse et al. ‘10

lower rating
longer dependency
Local is easier

ACCEPTABILITY RATINGS
Sprouse et al. ‘10

![Graph showing z-score rating over time for non-island and island conditions.](image)

ERP TIMECOURSE
Phillips et al. ‘05

![ERP timecourse showing activity over time.](image)

longer is later
Local is easier

ACCEPTABILITY RATINGS
Sprouse et al. ‘10

ERP TIMECOURSE
Phillips et al. ‘05

SAT ASYMPTOTIC ACCURACY
McElree et al. ‘03

less likely to succeed
Local is easier

Gibson (2000)
Dependency Locality Theory

Fodor (1978)
Gap-finding is hard

Frazier (1987)

Wanner & Maratsos (1978)
Storing incomplete dependencies is hard
Longer ≠ harder

Konieczny (2000)
German RC preverbal intraposition

Vasishth & Lewis (2006)
Hindi center embedding & object relative clauses

RC-modified subjects
Causes of facilitation

INTRODUCTION

Vasishth & Lewis (2006)

Mechanism of facilitation

RT ~ X

Why?
The officer was informed that the driver fainted/*drained.

+Adverb
... the driver abruptly fainted

+PP
... the driver of the ambulance fainted

+Subject Relative Clause
... the driver who wrecked the ambulance fainted

+Object Relative Clause
... the driver who the ambulance hit fainted
Speed-accuracy tradeoff

INTRODUCTION

Sentence (250 ms/word)

Fixation Point (500 ms)

Response Cue

Variable Processing Time

<<tone>>

admired

had

soldier

the

believed

general

the

that

report

the

was

It

+
Theoretical outcomes

Accuracy difference

Rate difference
Wagers & McElree (2009) actual data
Wagers & McElree (2009) actual data
Wagers & McElree (2009) summary

- Facilitation only observed in the +ADVERB conditions
- However, RCs were simple
- Give anti-locality a better chance by extending the RCs
- Follow the Jaeger et al. materials design
Exp. 1: Materials and Methods

- **ADJACENT**
 Wounded by the rebel in the trenches near the border, *the soldier twitched/snagged.*

- **+Object Relative Clause/NoPP**
 In the trenches near the border, *the soldier that the rebel wounded twitched/snagged.*

- **+Object Relative Clause/+1PP**
 In the trenches, *the soldier that the rebel wounded near the border twitched/snagged.*

- **+Object Relative Clause/+2PP**
 The soldier that the rebel wounded in the trenches near the border twitched/snagged.
Materials and Methods

• Acceptability × Length

 ADJACENT
 +OBJECT RC (ORC.noPP)
 +OBJECT RC/1PP (ORC.2PP)
 +OBJECT RC/2PP (ORC.1PP)

• 36 item sets

• MR-SAT
 • n = 10, compensated
 • Fillers with sentence-medial errors
 • Three sessions + with a practice session
 • Liu et al. (2009): Competitive model analysis

\[d' = \lambda \cdot \left(1 - e^{-\beta \cdot (t-\delta)}\right) \]
Results: Object Relative Clauses

[Graph showing the relationship between lag latency (ms) and discriminability (d-prime) for different conditions: ORC.noPP, ORC.PP1, ORC.PP2.]

Results: Object Relative Clauses

![Graph showing results of Object Relative Clauses. The graph plots discriminability (d-prime) against lag latency (ms). The x-axis represents lag latency in milliseconds, ranging from 0 to 6000. The y-axis represents discriminability, ranging from 0 to 3. The graph includes lines and data points for different conditions: ORC.noPP, ORC.PP1, and ORC.PP2.](image-url)
Results: Object Relative Clauses
Results: Best-fit parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>noPP</th>
<th>PP+1</th>
<th>PP+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptote λ</td>
<td>3.37</td>
<td>3.49</td>
<td>3.54</td>
</tr>
<tr>
<td>Rate β (sec$^{-1}$)</td>
<td></td>
<td>0.746</td>
<td></td>
</tr>
<tr>
<td>Intercept δ (sec)</td>
<td></td>
<td>0.724</td>
<td></td>
</tr>
</tbody>
</table>

2064 ms

$R^2 = 0.98$
Results: Best-fit parameters

<table>
<thead>
<tr>
<th></th>
<th>noPP</th>
<th>PP+1</th>
<th>PP+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptote</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td>3.37</td>
<td>3.49</td>
<td>3.54</td>
</tr>
<tr>
<td>Rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β (sec$^{-1}$)</td>
<td>0.746</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ (sec)</td>
<td>0.724</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2064 ms

$R^2 = 0.98$
Results: Adjacent v. ORC

![Graph showing discriminability (d-prime) vs. lag latency (ms) for Adjacent and ORC.noPP conditions.](image)
Results: Adjacent v. ORC
Summary

• For RC-modified subjects, there was no rate effect of adding more PPs

• There was an increase in asymptotic accuracy as more PPs were added:
 \[
 3.37 \text{ d'} < 3.49 \text{ d'} < 3.54 \text{ d'}
 \]
 consistent across subjects

• **Concern**: overall processing was slow and adjacent subject-verb dependencies were slowest of all
Experiment 2

• The preposed XPs that controlled for ordinal position may have significantly dampened/swamped the subject-verb relevant processing

 • XPs were attachable to either subject or verb

 • … and sometimes ambiguously

• Experiment 2 uses local environments that are identical to Experiment 1, but with an unambiguous embedding context to control for ordinal position
Materials and Methods

• **ADJACENT**
The medic who was tending wounds in the trenches near the border observed that

the soldier twitched/*snagged.

• **+Object Relative Clause/NoPP**
The medic in the trenches near the border observed that

the soldier that the rebel wounded twitched/*snagged.

• **+Object Relative Clause/+2PP**
The medic observed that

the soldier that the rebel wounded in the trenches near the border twitched/*snagged.

• **+ADVERB**
The medic who tended wounds in the trenches near the border observed that

the soldier slightly twitched/*snagged.
Materials and Methods

- Acceptability × Length

 ADJACENT

 + OBJECT RC (ORC.noPP)

 + OBJECT RC/2PP (ORC.2PP)

 + ADVERB

- 36 item sets
- Fillers identical to experiment 1
- MR-SAT
 - n = 10, course credit for a Semantics course
 - Five sessions + 1 practice session
Results: all data

[Graph showing discriminability (d-prime) vs. lag latency (ms) with different conditions represented by distinct markers and colors.]
Results: Adjacent, +Adverb, +ORC

![Graph showing the relationship between discriminability (d-prime) and lag latency (ms). The graph includes data points for Adjacent, +Adv, and +ORC.noPP conditions.]
Results: Best-fit curve
Results: Best-fit curve

- $+\text{Adv} > \text{Adjacent} >> +\text{RC}$

Wagers & McElree (2009)
Results: Best-fit parameters

<table>
<thead>
<tr>
<th></th>
<th>Adjacent</th>
<th>+ADV</th>
<th>+ORC noPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptote λ</td>
<td>2.75</td>
<td>2.80</td>
<td>2.76</td>
</tr>
<tr>
<td>Rate β (sec$^{-1}$)</td>
<td>1.69</td>
<td>1.74</td>
<td>1.48</td>
</tr>
<tr>
<td>Intercept δ (sec)</td>
<td></td>
<td>0.466</td>
<td></td>
</tr>
</tbody>
</table>
Results: Best-fit parameters

<table>
<thead>
<tr>
<th></th>
<th>Adjacent</th>
<th>+ADV</th>
<th>+ORC noPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptote</td>
<td>2.75</td>
<td>2.80</td>
<td>2.76</td>
</tr>
<tr>
<td>λ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rate</td>
<td>1.69</td>
<td>1.74</td>
<td>1.48</td>
</tr>
<tr>
<td>β (sec$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td></td>
<td>0.466</td>
<td></td>
</tr>
<tr>
<td>δ (sec)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average ‘speed’: $1/\beta + \delta$
Results: Best-fit parameters

<table>
<thead>
<tr>
<th></th>
<th>Adjacent</th>
<th>+ADV</th>
<th>+ORC noPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptote (\lambda)</td>
<td>2.75</td>
<td>2.80</td>
<td>2.76</td>
</tr>
<tr>
<td>Rate (\beta) (sec(^{-1}))</td>
<td>1.69</td>
<td>1.74</td>
<td>1.48</td>
</tr>
<tr>
<td>Intercept (\delta) (sec)</td>
<td></td>
<td>0.466</td>
<td></td>
</tr>
</tbody>
</table>

1056 ms 1040 ms 1142 ms

\(+Adv > Adjacent >> +RC\)

Wagers & McElree (2009)
Results: Adjacent v. ORC.PP2

[Graph showing discriminability (d-prime) vs. lag latency (ms) with data points for Adjacent and ORC.PP2 conditions.]
Results: Adjacent v. ORC.PP2

The graph shows the discriminability (d-prime) as a function of lag latency (ms) for two conditions: Adjacent and +ORC.PP2. The +ORC.PP2 condition is indicated by green circles, while the Adjacent condition is indicated by black circles. The graph indicates that the +ORC.PP2 condition is faster than the Adjacent condition.
Results: Adjacent v. ORC.PP2

The graph shows the discriminability (d-prime) as a function of lag latency (ms) for two conditions: Adjacent and +ORC.PP2. The +ORC.PP2 condition is indicated to be slower than the Adjacent condition.
Results: Best-fit parameters

<table>
<thead>
<tr>
<th></th>
<th>Adjacent</th>
<th>+ADV</th>
<th>+ORC noPP</th>
<th>+ORC PP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptote (\lambda)</td>
<td>2.75</td>
<td>2.80</td>
<td>2.76</td>
<td>2.58</td>
</tr>
<tr>
<td>Rate (\beta) (sec(^{-1}))</td>
<td>1.69</td>
<td>1.74</td>
<td>1.48</td>
<td>3.75</td>
</tr>
<tr>
<td>Intercept (\delta) (sec)</td>
<td>0.466</td>
<td></td>
<td>0.673</td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>1056 ms</td>
<td>1040 ms</td>
<td>1142 ms</td>
<td>939 ms</td>
</tr>
</tbody>
</table>

RC.PP2 >> +Adv > Adjacent >> +RC.noPP
Results: Best-fit parameters

<table>
<thead>
<tr>
<th></th>
<th>Adjacent</th>
<th>+ADV</th>
<th>+ORC noPP</th>
<th>+ORC PP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptote λ</td>
<td>2.75</td>
<td>2.80</td>
<td>2.76</td>
<td>2.58</td>
</tr>
<tr>
<td>Rate β (sec$^{-1}$)</td>
<td>1.69</td>
<td>1.74</td>
<td>1.48</td>
<td>> 3.75</td>
</tr>
<tr>
<td>Intercept δ (sec)</td>
<td>0.466</td>
<td></td>
<td></td>
<td>< 0.673</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>1056</td>
<td>1040</td>
<td>1142</td>
<td>939</td>
</tr>
</tbody>
</table>

RC.PP2 >> +Adv > Adjacent >> +RC.noPP
Results: Model comparison

Single intercept model

Dual intercept model

lag latency (ms)

discriminability (d-prime)
Results: Graphical model comparison

- Single intercept model
- Dual intercept model

![Graph showing comparison between single and dual intercept models](attachment:image.png)
Results: Model comparison quantified

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Adjusted R-squared</th>
<th>Deviance</th>
<th>AIC</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-4-1 Single intercept</td>
<td>0.9917</td>
<td>-147.41</td>
<td>-129.41</td>
<td>-109.44</td>
</tr>
<tr>
<td>4-4-2 Dual intercept</td>
<td>0.9938</td>
<td>-156.47</td>
<td>-136.47</td>
<td>-114.28</td>
</tr>
<tr>
<td>4-4-4 Saturated intercept</td>
<td>0.9938</td>
<td>-157.30</td>
<td>-133.31</td>
<td>-106.68</td>
</tr>
</tbody>
</table>

\[G^2(1) = 9.1, p < .005 \]
\[G^2(2) = 0.8, n.s. \]

Consistent parameter ranking across participants (p < .05)
Results: Across participants

ORC_PP2- Adj

Intercept 1/Rate
δ (sec) 1/β (sec)
Results: Summary

• When the V-dependencies are strictly local, we observe two distinct effects on speed for the strong anti-local context:

 • An intercept shift
 Discriminating information is available much later

 • A rate increase
 Information is accrued much faster

• Overall:
 a facilitation in speed
Relation to reaction times

![Graph showing the relationship between discriminability (d-prime) and lag latency (ms) for Adjacent and ORC_PP2 conditions.](image)
Conclusion

- Strongly anti-local S-V relationship formation is associated with **faster dynamics**
 - Consistent with predictive accounts (sloughing, working ahead)
 - Less consistent with memory-strength accounts

- However, it associated with a **cost**: discriminative information is **available later**

- **Facilitation** obtains on balance for modest-to-high accuracy processing
What is the cost?

- **Focus of attention costs**
 - 85 ms / McElree et al. (2003)
 - 87 ms, 74 ms / Wagers & McElree (2009)
 - 83 ms / this study [ORC.noPP-Adjacent]

- **Intercept cost:**
 - 207 ms (+44%)
What is the cost?

- Previous studies:
 - ... $[\text{VP}]_{S} [\text{NP}]_{NP} \rightarrow [\text{NP V}]_{S}$

- Current study
 - ... $[\text{NP}]_{PP-2} [\text{PP-1}]_{VP} [\text{VP}]_{S} [\text{NP}]_{NP} \rightarrow [\text{NP V}]_{S}$
 - ... $[\text{NP}]_{PP-2} [\text{PP-1}] \rightarrow \ldots [\text{PP-1}]_{VP} [\text{VP}]_{S} [\text{NP}]_{NP} \rightarrow [\text{NP V}]_{S}$

- Relating the scope of focal attention with the chunking of syntactic category
A diversity of timing measures

- RTs masked two underlying effects
 - Speed and accuracy tradeoffs are not predictable

- Dillon et al., Thurs, Binding ziji
 faster rate was associated with lower accuracy

- Staub, Fri, frequency & predictability in fixation times
 RT distribution modeling
Collaborators and acknowledgments

- Sarah Napoli
 (UCSC Linguistics)

- Shayne Sloggett, Pranav Anand and
 LING116 members

- CUNY reviewers

- Office of the Dean of Humanities, UCSC,
 and UCSC Academic Senate Committee on Research

Thank you.
Appendices
Results: Best-fit parameters

<table>
<thead>
<tr>
<th></th>
<th>Adjacent</th>
<th>+ADV</th>
<th>+ORC noPP</th>
<th>+ORC PP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptote λ</td>
<td>2.75</td>
<td>2.80</td>
<td>2.76</td>
<td>2.58</td>
</tr>
<tr>
<td>Rate β (sec$^{-1}$)</td>
<td>1.69</td>
<td>1.74</td>
<td>1.48</td>
<td>3.75</td>
</tr>
<tr>
<td>Intercept δ (sec)</td>
<td>0.466</td>
<td></td>
<td>0.673</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1056 ms</td>
<td>1040 ms</td>
<td>1142 ms</td>
<td>940 ms</td>
</tr>
</tbody>
</table>

`RC.PP2 >> +Adv > Adjacent >> +RC.noPP`
Results: 4-4-4 parameters

<table>
<thead>
<tr>
<th></th>
<th>Adjacent</th>
<th>+ADV</th>
<th>+ORC noPP</th>
<th>+ORC PP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptote λ</td>
<td>2.75</td>
<td>2.80</td>
<td>2.76</td>
<td>2.57</td>
</tr>
<tr>
<td>Rate β (sec$^{-1}$)</td>
<td>1.63</td>
<td>1.77</td>
<td>1.51</td>
<td>3.76</td>
</tr>
<tr>
<td>Intercept δ (sec)</td>
<td>0.467</td>
<td>0.476</td>
<td>0.476</td>
<td>0.673</td>
</tr>
<tr>
<td></td>
<td>1057 ms</td>
<td>1039 ms</td>
<td>1140 ms</td>
<td>939 ms</td>
</tr>
</tbody>
</table>

RC.PP2 >> +Adv > Adjacent >> +RC.noPP
Results: 4-4-1 parameters

<table>
<thead>
<tr>
<th></th>
<th>Adjacent</th>
<th>+ADV</th>
<th>+ORC noPP</th>
<th>+ORC PP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptote (\lambda)</td>
<td>2.75</td>
<td>2.80</td>
<td>2.76</td>
<td>2.58</td>
</tr>
<tr>
<td>Rate (\beta (\text{sec}^{-1}))</td>
<td>1.68</td>
<td>1.72</td>
<td>1.46</td>
<td>1.77</td>
</tr>
<tr>
<td>Intercept (\delta (\text{sec}))</td>
<td>0.460</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timing</td>
<td>1056 ms</td>
<td>1042 ms</td>
<td>1143 ms</td>
<td>1023 ms</td>
</tr>
</tbody>
</table>

RC.PP2 >> +Adv > Adjacent >> +RC.noPP
Results: Across participants

Consistent parameter ranking across participants (p < .05)
Spill-over? ... lag latency plots

![Bar charts showing RT (ms) across different lags](image)
Results: Graphical model comparison

- Single intercept model
- Dual intercept model

![Graph showing comparison between Single intercept model and Dual intercept model]
Wagers & McElree (2009) Adverb specificity

Abruptly

Evidently
Exponential equation

\[d' = \lambda \cdot \left(1 - e^{-\beta \cdot (t-\delta)}\right) \]
Accuracy ~ session