FOCAL ATTENTION
AND
THE TIMING OF MEMORY RETRIEVAL
IN LANGUAGE COMPREHENSION

Matt Wagers, NYU/UCSC
Brian McElree, NYU

OTHER CONTRIBUTORS
Stephani Foraker, (NYU/Buffalo)
Andrea Martin, (NYU/BCBL)
Ilke Öztekin, (NYU/Brown)
Julie van Dyke, (NYU/Haskins)

Research supported by NICHD
Our ability to actively attend to and concurrently process information is extremely limited (e.g., Broadbent, 1958).

Nonetheless, component operations in many cognitive skills rely on the products of recent perceptual and cognitive analyses—products displaced from active processing by subsequent operations.

Successful execution of many cognitive skills requires rapid shunting of information between memory and active processing. Retrieval is required to restore past analyses to the focus of attention.
Real-time comprehension routinely requires coordinating linguistic features and constituents over time.

THREE BASIC QUESTIONS

1. How are representations retrieved from memory in real-time comprehension?

3. What factors determine the success of retrieval?

5. When is retrieval from memory required for comprehension?
1. **How are representations retrieved in comprehension?**

- Representations formed in comprehension are **content-addressable**

- Representations are retrieved with a **cue-driven, direct-access** operation

 Cues in the retrieval context contact matching memory representations **directly**, circumventing the need to search through irrelevant representations.
1. How are representations retrieved in comprehension?

When retrieval requires a search, retrieval time is determined by the amount of information in memory (e.g., McElree & Dosher, 1993, JEP:General).

However, the speed of processing an expression requiring retrieval exhibits the signature pattern of a direct-access operation: It is unaffected by:

- the amount of information interpolated between the to-be-retrieved constituent and the retrieval site
- the amount of information in discourse
1. How are representations retrieved in comprehension?

E.g., Speed of interpreting the sentence final verb (*embraced*) does not vary with the distance of its direct object (*the book*)

This is the book that the public embraced _____.
This is the book that the editor claimed the public embraced _____.
This is the book that the editor told the newly appointed writer for the Times the public embraced _____.

Holds across a range of nonadjacent dependancies:

- Verb and arguments (McElree, 2000; McElree, Foraker, & Dyer, 2003)
- Subject-verb dependancies (McElree, Foraker, & Dyer, 2003)
- VP Ellipsis (Martin & McElree, 2008; in press)
- Coreference relations (Foraker & McElree, 2007)
2. **What factors determine the success of**

In a cue-driven retrieval operation, success is a function of the degree to which cues uniquely identify the required constituent.

Direct-access retrieval is fast, but it is susceptible to similarity-based interference when retrieval cues overlap with other elements in memory.

Evidence in hand

Both syntactic and semantic/pragmatic cues drive retrieval, with the former gating the latter (Van Dyke & McElree, in prep)

Viz. a competitor sharing semantic/pragmatic properties with a target does not engender interference if in an inappropriate syntactic position
3. When does comprehension require retrieval?

Whenever a required constituent is no longer among those elements that are actively being processed, *viz.* the constituent is outside *focal attention*.

Focal attention is extremely limited: For sequentially-presented information, the capacity of focal attention appears limited to the last “unit” processed (Wickelgren et al., 1980; Garavan, 1998; Cowan, 2001; McElree, 2006; Jonides et al., 2008).

Building structured representations for sequentially-presented input will often require shunting information between memory and focal attention.
Estimating the capacity of focal attention: Access speed can be used to determine whether a representation is active in focal attention or in memory only (McElree, 2003; 2006).
SAT variant of Item Recognition (Sternberg) Task
SAT variant of Item Recognition (Sternberg) Task

![Graph showing the relationship between accuracy (d’ units) and total processing time (interruption lag plus latency) in seconds. The graph illustrates the progression from chance, information accrual, to terminal accuracy, and the asymptote.]
Accuracy (Asymptotic) versus Speed (Dynamics) Effects

A. Accuracy differences
 Functions differ in asymptotes (times where performance ceases to improve)

B. Speed differences
 Dynamics are disproportional (rate and intercept vary)
Representative findings:
Item Recognition (McElree, 1996, M&C)

Last item studied on the list (SP5) exhibits markedly faster access speed than all other list positions.
SAT DYNAMICS ADVANTAGE AS A BEHAVIORAL MARKER OF FA

- Advantage is not about low-level perception:
 - true of rhyme and synonym judgments
 - speed advantage accrues to chunks, not a single ‘item’ (McElree 1998; 2006)

- Advantage reflects what’s currently being processed:
 - not the temporally last item in n-back tasks (McElree, 2001)
 - tracks with covert rehearsal (McElree 2006)
Speed advantage is associated with deactivation in regions implicated in retrieval (e.g., MTL, LIFG)

The span of focal attention in comprehension

Approach: Determine what types of constituents induce shifts from fast to slower processing when interpolated between two dependent constituents.

The point at which processing speed shifts indicates when the constituent required to resolve the dependancy has been displaced from focal attention.
The diagram illustrates the SAT Procedure, showing the sequence of words presented during sentence processing. The Variable Processing Time is shown as 250 ms/word, and the Fixation Point is indicated at 500 ms, with a Response Cue marking the end of word presentation.
1. The editor laughed.
 (....*ripped.)

2. The editor that the book amused laughed.

3. The editor from the prestigious press that the book amused laughed.

4. The editor that the book that won the award amused laughed.

5. The editor that the book that the journalist wrote amused laughed.

McElree, Foraker, & Dyer (JML, 2003)

![Graph of processing time vs. accuracy](attachment:image.png)

- **Accuracy (d')**
 - 0
 - 1
 - 2
 - 3
 - 4

- **Processing Time (Lag plus Latency) in Seconds**
 - 0.0
 - 0.5
 - 1.0
 - 1.5
 - 2.0
 - 2.5
 - 3.0

Legend:
- No Interpolation
- One Object RC
- PP + Object RC
- Object + Subject RCs
- Two Object RC
New Experiment

When is the embedded subject (*the driver*) displaced from focal attention, so that it must be retrieved at the verb (*fainted*)?

Adjacent

The officer was informed that the driver fainted.

...*drained.*

Adverb

*The officer was informed that the driver *abruptly* fainted.*

Preposition Phrase (PP modifying the subject)

*The officer was informed that the driver *of the ambulance* fainted.*

Subject Relative Clause

*The officer was informed that the driver *who wrecked the ambulance* fainted.*

Object Relative Clause

*The officer was informed that the driver *who the ambulance hit* fainted.*
MULTI-RESPONSE SAT

- 17 subjects made Yes-No acceptability judgments at each response-tone (18/trial)
 e.g., the driver fainted/ *drained.

- 40 item sets (10 conditions)

- Hierarchical model fitting performed on subjects’ SAT functions (d’ as a function of processing time) to isolated differences in accuracy (SAT asymptote) and speed (SAT intercept or rate).

18 response tones at 350 ms intervals
The officer was informed that the driver fainted.

...*drained.

The officer was informed that the driver abruptly fainted.

The officer was informed that the driver of the ambulance fainted.

The officer was informed that the driver who wrecked the ambulance fainted.

The officer was informed that the driver who the ambulance hit fainted.
Relative clauses displace subject from focal attention
The officer was informed that the driver fainted.

The officer was informed that the driver *abruptly* fainted.

Preposition Phrase (PP modifying the subject)

The officer was informed that the driver of the ambulance fainted.

PP modifying the subject keeps the subject active in focal attention

Adverb? Processing speed was significantly faster than Adjacent
Adverbs such as *abruptly* in our Adverb condition modified the VP. Preverbal modifiers strongly—if not unequivocally—signal the presence of a VP.

*The officer was informed that the driver *abruptly* fainted.*

The speed advantage for the Adverb condition may reflect this “headstart” on VP processing.

EXPERIMENT 2: VP vs SENTENTIAL ADVERBS

ADJACENT

The officer was informed that the driver fainted. ... *drained.*

ADVERB/VP

*The officer was informed that the driver *abruptly* fainted.*

ADVERB/S

*The officer was informed that the driver *evidently* fainted.*

PREPOSITION PHRASE (PP MODIFYING THE SUBJECT)

The officer was informed that the driver of the ambulance fainted.

SUBJECT RELATIVE CLAUSE

The officer was informed that the driver who wrecked the ambulance fainted.
The officer was informed that the driver fainted.

As in past studies, a relative clause displaces subject from focal attention.

\[\text{Accuracy} \quad \text{Speed} \]

\[
\begin{array}{ccc}
\text{Adjacent} & 2.95 & 1.758 \\
\text{+SRC} & 2.62 & 1.845 \\
\end{array}
\]
The officer was informed that the driver fainted.

Preposition Phrase (PP modifying the subject)
The officer was informed that the driver of the ambulance fainted.

![Graph showing discriminability vs lag latency with data points at 2.95 for accuracy and 1.758 for speed for Adjacent, and 2.88 for accuracy and 1.753 for speed for +PP.](image)

Again, a PP does not displace the subject from focal attention.
The officer was informed that the driver fainted.

The officer was informed that the driver abruptly fainted.

The officer was informed that the driver evidently fainted.

A high-attaching adverb does not show the ‘prep-processing’ advantage of VP-modifying adverb, nor does it displace the subject from focal attention.
Our comprehension results converge with those from basic memory research—using a wide range of ‘memory’ tasks (see McElree, 2006*)—indicating that focal attention is extremely limited, perhaps limited to a single chunk (processing unit).

In comprehension, our results suggest that only the last major constituent (e.g., subject-NP) processed is maintained in focal attention, and hence does not require retrieval to be restored.

Even so, not all information about such a constituent may active within focal attention.

WAGERS & McELREE (IN PREP; CUNY ’09 TALK)
Availability of a plurality feature throughout the building of an NP.

MARKED FEATURE
...those
monkeys. ...*monkey
...those face-making monkeys.
...those mischievous, face-making monkeys.

UNMARKED FEATURE MODIFIERS
...that monkey. ...*monkeys
...that face-making monkey.
...that mischievous, face-making monkey.

An unmarked feature of the determiner does not appear to be maintained in focal attention throughout processing of the NP.
Memory operations may be more ubiquitous in comprehension than previously supposed.

Even simple expressions may require shunting information between memory and focal attention.