Gender–Case Constraints in Zapotec

Steven Foley, Nick Kalivoda, and Maziar Toosarvandani
University of California, Santa Cruz
{srfoley, nkalivod, mtoosarv}@ucsc.edu

WSCLA 22 – April 22, 2017

1 Introduction

(1) Person–Case Constraint (Strong)

For two clitics A and B, where A c-commands B (A \(\not\rightarrow\) B), B must be third person.

(2) Spanish

a. 1, 2 \(\rightarrow\) 3

Pedro {me, te} lo envía
Pedro {1_DAT, 2_DAT, 3_ACC} send.PRES.3SG
‘Pedro sends it to [me, you].’

b. *3 \(\not\rightarrow\) 1, 2

* Pedro le {me, te} envía.
Pedro 3_DAT {1.ACC, 2.ACC} send.PRES.3SG
Intended: ‘Pedro sends {me, you} to him.’

(Ormazabal and Romero 2007:316–317)

c. *2 \(\not\rightarrow\) 1

* Te me van a vender.
2SG.DAT 1SG.ACC go.PRES.3PL to sell.INF
Intended: ‘They will sell you to me.’

(Ormazabal and Romero 2007:331)

There are many theories of the PCC. Most rely on Agreement between a head looking for some \(j\)-features — person (\(\pi\)), number (\(\#\)), or gender (\(\gamma\)) — and one (or more) clitics to license the grammatical combinations.

(3)

Within this paradigm, there are two main approaches to the strong and other versions of the PCC:

○ Serial theories

○ Parallel theories

The probe agrees with both clitics simultaneously via Multiple Agree (Anagnostopoulou 2005, Nevins 2007, 2011, a.o.).

We evaluate serial and parallel theories of the PCC by looking at Gender–Case Constraints (GCCs) in several Zapotec languages (Oto–Manguean: Oaxaca, Mexico).

(4) Santiago Laxopa Zapotec

a. \(\text{Blen}=\mathbf{e}^\prime\) \(\{=\mathbf{ba}^\prime, =\mathbf{b}, =\mathbf{n}\}\)

hug.COMP=3.EL \(\{=3.HU, =3.AN, =3.IN\}\)

‘S/he (an elder) hugged [her/him (a non-elder), it (an animal), it (a thing)].’

(FSR, SLZ1012, 15:16–15:33)

b. \(\text{Blen}=\mathbf{ba}\) \(\{=\mathbf{ne}^\prime, =\mathbf{b}, =\mathbf{n}\}\)

hug.COMP=3.HU \(\{=3.EL, =3.AN, =3.IN\}\)

‘S/he (a non-elder) hugged [her/him (an elder), it (an animal), it (a thing)].’

(FSR, SLZ1012, 15:47–17:03)

c. \(\mathbf{Ba} \times \mathbf{Bzhig}=\mathbf{web}\) \(\{=*\mathbf{ne}^\prime, *=\mathbf{ba}^\prime, *=\mathbf{n}\}\)

already push.COMP=3.AN \(\{=3.EL, =3.HU, =3.IN\}\)

‘It (an animal) pushed [her/him (an elder), her/him (a non-elder), it (a thing)].’

d. \(\mathbf{Bxi} \times \mathbf{zhig}=\mathbf{ne}\) \(\{=*\mathbf{ne}, *=\mathbf{ba}, *=\mathbf{eb}\}\)

strike.COMP=3.IN \(\{=3.EL, =3.HU, =3.AN\}\)

‘It (a thing) struck [her/him (an elder), her/him (a non-elder), it (an animal)].’

(FSR, GZYZ2012, 24:47–25:57)

These effects resemble the PCC in more familiar languages with two differences: (i) they involve subject and object clitics, and (ii) gender is involved, not person.

We argue that a parallel theory — but not a serial theory — can account for the full range of GCC patterns in Santiago Laxopa and three other varieties of Zapotec.

Specifically, we adopt a modified version of the intervention condition on Multiple Agree proposed by Nevins (2007, 2011), generating a somewhat constrained typology of possible GCC patterns.

While interactions between animacy and the PCC have been noted before (Ormazabal and Romero 2007, Richards 2008), Zapotec languages provide a particularly valuable perspective because of their rich gender distinctions.
2 Gender–Case Constraints in Zapotec

We focus on four Northern Zapotec varieties, all of which have the same four-way gender system:

- ELd*er human vs. non-elder
- HUman vs. ANimal
- INanimate

Zapotec languages typically have both strong and clitic pronouns, which distinguish multiple animacy-based gender categories (Marlett 2010a,b).

(5) **Strong and clitic pronouns in Santiago Laxopa Zapotec**

<table>
<thead>
<tr>
<th></th>
<th>STRONG</th>
<th>CLITIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1SG</td>
<td>nada'</td>
<td>=a'</td>
</tr>
<tr>
<td>1PL.EXCL</td>
<td>dzi'u'</td>
<td>=dz'u</td>
</tr>
<tr>
<td>1PL.INCL</td>
<td>net'o'</td>
<td>=to'</td>
</tr>
<tr>
<td>2SG</td>
<td>le'</td>
<td>=o'</td>
</tr>
<tr>
<td>2PL</td>
<td>le'e</td>
<td>=le'</td>
</tr>
<tr>
<td>3.EL</td>
<td>le'</td>
<td>=le'b</td>
</tr>
<tr>
<td>3.HU</td>
<td>leb'</td>
<td>=le'</td>
</tr>
<tr>
<td>3.AN</td>
<td>leb</td>
<td>=le'b</td>
</tr>
<tr>
<td>3.IN</td>
<td>len</td>
<td>=le'n</td>
</tr>
</tbody>
</table>

Clitic pronouns are syntactically and prosodically dependent; strong pronouns appear elsewhere (Cardinaletti and Starke 1999). This contrast is typical of Zapotec languages (Marlett 2010a).

The four varieties we examine today prohibit certain combinations of subject and direct object clitics based on both person and gender:

- Santiago Laxopa (original field work, Toosarvandani 2017)
- Hidalgo Yalalag (López and Newberg 2005)
- San Baltazar Yatzachi el Bajo (Butler 1980)
- San Bartolomé Zoogocho (Sonnenschein 2004)

While subject pronouns may always cliticize, object pronouns can only cliticize under certain conditions.

2.1 Person restrictions on clitic clusters

All four varieties exhibit the Strong PCC: first or second person direct object pronouns may never cliticize (perhaps not in any Zapotec variety; Marlett 2010a).

(6) **3 > 1 (Yalalag)**

a. * Wdill=ba'=a'.

\[\text{sting:COMP=3.AN=1SG} \]

Intended: ‘It stung me.’

b. Wdill=ba' nada'.

\[\text{sting:COMP=3.AN 1SG.IND} \]

‘It stung me.’

(López and Newberg 2005)

We set this restriction aside to concentrate on restrictions between third person clitic combinations, which are more complicated (and interesting).

2.2 Gender restrictions on clitic clusters

In Yalalag, there is a strict gender hierarchy: an object clitic must not be higher than the subject clitic on this hierarchy.

(7) **Yalalag: (1 2 >) 3.EL > 3.HU > 3.AN > 3.IN**

a. 3.EL

\[V=\text{e'le'e} \]

3.HU

\[V=\text{e'}le'e \]

3.AN

\[V=\text{e'le'be'} \]

3.IN

\[V=\text{e'le'ba'} \]

\[V=\text{e'len} \]

b. 3.EL

\[\text{–} \]

3.HU

\[* \]

3.AN

\[* \]

3.IN

\[* \]

The dashed cells represent subject and object clitic combinations with totally identical features. Such clusters are always banned — except when a clitic happens to have two allomorphs, e.g. 3.IN in Yatzachi.

(8) **3.EL > 3.EL (Yatzachi)**

a. Chlo'ee=ne'.

\[\text{teach:CONT=3.EL=3.EL} \]

‘S/he (an elder) teaches her/him (an elder).’

b. Chle'i ne'ne'.

\[\text{see:CONT=3.EL=3.EL} \]

Intended: ‘S/he (an elder) sees her/him (an elder).’

Butler 1980

1 Other Zapotec languages have genders specific to adult males, adult females, children, babies, young unmarried men, deities, celestial bodies, liquids, trees and wooden objects, and disparaged/pejorative referents; see Marlett (2003a) for a survey.
These two generalizations can also be characterized in terms of the shape of ungrammatical cells within a paradigm:

- Zoogocho and Yatzachi (and, potentially, some other yet-to-be-identified varieties) differ in terms of the absolute restriction they impose on the subject when there is an object.

12. Rising Floor Generalization

For any subject-object clitic cluster, if the subject cannot be gender G, then it also cannot be gender G', where G > G' on the hierarchy.

The height of the 'floor' of stars can vary: if a row is ungrammatical, so are all rows below it.

\[\begin{array}{cccccc}
3.EL & - & \checkmark & \checkmark & \checkmark & \checkmark \\
3.HU & \checkmark & - & \checkmark & \checkmark & \checkmark \\
3.AN & * & * & - & - & - \\
3.IN & * & * & - & - & - \\
\end{array} \quad \begin{array}{cccccc}
3.EL & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\
3.HU & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\
3.AN & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\
3.IN & * & * & * & * & - \\
\end{array} \]

- Yalalag, Laxopa, and Zoogocho constrain the relative gender of subject and object clitics, but only if the subject is below a certain rung on the hierarchy.

13. Growing Staircase Generalization

For any subject-object clitic cluster, if an object cannot outrank a subject with gender G, then an object also cannot outrank a subject with gender G', where G > G' on the hierarchy.

If a cell under the X \(\geq \) \(Y\) diagonal is ungrammatical, so is every cell below it or to its left. This creates a 'staircase' of stars up to a certain height.

\[\begin{array}{cccccc}
3.EL & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\
3.HU & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\
3.AN & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\
3.IN & * & * & * & * & - \\
\end{array} \]

This pattern is also manifest with PCCs, albeit in miniature form (Bonet 1991, Nevins 2007, 2011).

14. a. Ultrastrong PCC (Classical Arabic) b. Weak PCC (Catalan)

\[\begin{array}{cccc}
1^O & \checkmark & \checkmark & \checkmark \\
2^O & * & - & - \\
3^O & * & * & - \\
\end{array} \quad \begin{array}{cccc}
1^O & \checkmark & \checkmark & \checkmark \\
2^O & \checkmark & \checkmark & \checkmark \\
3^O & \checkmark & - & - \\
\end{array} \]

The ultimate theory of the GCC (and PCC) will have the following properties:

- The Agree relation that licenses clitic combinations operates in parallel, rather than serially, since features of both clitics in a cluster must be accessible to the probe simultaneously (Sections 3 and 4).
- Only patterns are generated that obey the Rising Floor and Growing Staircase Generalizations (or combinations thereof), as these highly constrain the variation in possible GCC patterns (Section 5).
3 A serial approach

In serial theories of the PCC, a probe cannot Agree with both clitics in a cluster when the first one it finds is more featurally specified than the second (Anagnostopoulou 2003:286–291, Béjar and Rezac 2003, Walkow 2012, Preminger 2014, a.o.).

When this happens, the second clitic remains fatally unlicensed (e.g. Person Licensing Condition; Béjar and Rezac 2003:53).

(15) **Clitic Licensing Condition**

A clitic must be licensed by valuing a feature on a φ-probe.

This is a more general constraint, which will permit comparison between serial and parallel theories of the PCC (and by extension the GCC).

3.1 The basic mechanics

Adopting Harley and Ritter’s (2002) feature geometry, person features are privative. Pronouns have some combination of three features — [π], [Participant], and [Author] — which form an entailment relationship.

(16) 1st 2nd 3rd

\[
\begin{array}{c|c|c|c}
\pi & \pi & \pi \\
PA & PA & PA \\
AU & [π] & [π] \\
\end{array}
\]

In one version of a serial theory, the Strong PCC is derived by locating a probe between the two clitics, and relativizing it to [π] and [PA]. The probe Agrees downward before Agreeing upward (Béjar and Rezac 2009).²

(17) \(1 \gg 3 \)

Thus, the structurally superior clitic is never Agreed with, violating the Clitic Licensing Condition. The ungrammatical 2 \(\gg \) 1 and 1 \(\gg \) 2 combinations are likewise ruled out.

3.2 Extension to the GCC

By analogy to person, the gender categories in Zapotec might also be organized into a feature geometry, comprising four features.

(19) 3. EL \(\gg \) 3. HU 3. AN 3. IN

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
\gamma & \gamma \\
AN & AN \\
HU & HU \\
EL & EL \\
\end{array}
\]

The GCC pattern in Yalálag (the tallest ‘staircase’) can be derived by relativizing the probe to all four gender features (cf. Walkow’s (2012) account of the Ultrastrong PCC in Arabic).

(20) 3. EL \(\gg \) 3. HU

The ungrammatical combinations arise for the same reason as before: the probe is fully satisfied by the lower clitic, so the higher clitic violates the Clitic Licensing Condition.

(21) *3. HU \(\gg \) 3. EL

The other grammatical clusters in Yalálag are derived in a similar fashion, if Agree is a grammatical operation that can fail — the probe need not find all features it is relativized to (Béjar and Rezac 2009:45, Preminger 2014).
fail to freely allow all combinations of elder and human clitics. While members to occur freely with one another. The GCC patterns in Laxopa, Yatzachi, and Zoogocho all collapse two or more gender categories, allowing their three Zapotec varieties. While a serial approach can derive the GCC pattern in Yal

3.3 A problem

While a serial approach can derive the GCC pattern in Yalálag, it cannot generate the GCC patterns in the other three Zapotec varieties.

The GCC patterns in Laxopa, Yatzachi, and Zoogocho all collapse two or more gender categories, allowing their members to occur freely with one another.

But no combination of features on the probe generates these patterns under a serial approach; moreover, many implausible patterns are predicted.

<table>
<thead>
<tr>
<th>PROBE</th>
<th>PREDICTED CLITIC CLUSTERS</th>
<th>LANGUAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>L₁</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>L₂ [a]</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>L₃ [a, AN]</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>L₄ [a, HU]</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>L₅ [a, HU]</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>L₆ [a, HU]</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>L₇ [a, AN]</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>L₈ [a, HU]</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>L₉ [a, AN]</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>L₁₀ [a, HU]</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>L₁₁ [a, AN]</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>L₁₂ [a, HU]</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>L₁₃ [a, AN]</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>L₁₄ [a, HU]</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>L₁₅ [a, HU]</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>L₁₆ [a, AN, a, HU]</td>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>

While L₇ and L₁₄ — like Yatzachi — do not allow for any combination of animate and inanimate clitics, they both fail to freely allow all combinations of elder and human clitics.

These limitations are inherent to a serial approach. To derive the attested GCC patterns:

- The probe must be able to continue probing after it has Agreed with the lower argument just in case the higher argument belongs to certain categories (e.g., in Laxopa, when it is elder or human, but not animal or inanimate).
- Yet, in this theory, a probe’s ability to continue probing is determined entirely by the argument it is currently Agreeing with (i.e., whether or not the first goal values all the probe’s features).

In other words, these grammatical combinations require a form of “look-ahead” that is simply impossible in a myopic serial theory.

4 A parallel approach

The probe is relativized so that — with certain conditions on Multiple Agree — it can only Agree with some features for which the probe is relativized from intervening between it and its goals.

While Nevins’ parallel theory can be extended to account for the GCC patterns in three Zapotec languages, the pattern in Yatzachi remains a problem.

4.1 The basic mechanics

On Nevins’s theory, Multiple Agree is subject to an intervention condition, which prohibits elements without the features for which the probe is relativized from intervening between it and its goals.

For a probe P relativized to a feature [+F] with a goal G that bears [+F], there can be no G’ such that:
(i) P c-commands G’ and G’ c-commands G, and
(ii) G’ does not bear [+F].
(Nevins also countenances relativizing a probe to other values besides the marked value of a feature, though this is not reflected in the definition above.)
For reasons that are immaterial here, Nevins’ system assumes that \(\varphi \)-features are bivalent, not privative. Some feature combinations are impossible, e.g. \([+AU] \subset [+PA], [+PA] \subset [+\varphi] \).

\[
\begin{array}{c|c|c|c}
\pm AU & \pm PA & \pm \varphi \\
1 & + & + & + \\
2 & - & + & + \\
3 & - & - & + \\
\end{array}
\]

If the probe is relativized to \([+PA] \), this derives the Weak PCC: a third-person clitic cannot c-command a local-person clitic.

\[
\begin{array}{c|c|c|c}
I & \geq 3 & +3 & \geq 1 \\
\end{array}
\]

Crucially, to derive the Weak PCC, this still allows for any combination of local-person clitics, as then they are both \([+PA] \) and Contiguous Agree is not violated.

\[
\begin{array}{c|c|c|c}
I & \geq 2 & +2 & \geq 1 \\
\end{array}
\]

4.3 The problem with Yatzachi

It is not possible to generate the GCC pattern in Yatzachi by relativizing to the marked value for any combination of gender features, because these do not rule out the ungrammatical combination \(3.AN \geq 3.IN \).

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c}
\text{Yatzachi} (1 & 2 >) & 3.EI & 3.HU & 3.AN & 3.IN \\
\end{array}
\]
Is there another way of accounting for Yatzachi? To account for the Strong PCC, Nevins imposes an additional constraint, Matched Values, on Multiple Agree, cf. Anagnostopoulou (2005)

(33) Matched Values
For a probe P relativized to a contrastive value for feature [+F], every goal G must match in its value for [+F].

This constraint only has an effect when the probe is relativized to the contrastive value for a feature.

(34) A pronoun S with specification [±αF] is contrastive for [F] if there is another pronoun S' in the inventory that is featurally identical to S, except that it is [±αF].

(Nevins 2007:289)

Without getting bogged down in the details, a probe with a contrastive relativization rules out adjacent columns in a paradigm.

(35) a. Relativization: Contrastive [±EL]

<table>
<thead>
<tr>
<th>3.EL</th>
<th>3.HU</th>
<th>3.AN</th>
<th>3.IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.EL</td>
<td>−</td>
<td>*</td>
<td>✓</td>
</tr>
<tr>
<td>3.HU</td>
<td>*</td>
<td>−</td>
<td>✓</td>
</tr>
<tr>
<td>3.AN</td>
<td>*</td>
<td>✓</td>
<td>−</td>
</tr>
<tr>
<td>3.IN</td>
<td>*</td>
<td>*</td>
<td>−</td>
</tr>
</tbody>
</table>

b. Relativization: Contrastive [±HU]

<table>
<thead>
<tr>
<th>3.EL</th>
<th>3.HU</th>
<th>3.AN</th>
<th>3.IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.EL</td>
<td>−</td>
<td>*</td>
<td>✓</td>
</tr>
<tr>
<td>3.HU</td>
<td>*</td>
<td>*</td>
<td>✓</td>
</tr>
<tr>
<td>3.AN</td>
<td>*</td>
<td>✓</td>
<td>−</td>
</tr>
<tr>
<td>3.IN</td>
<td>*</td>
<td>✓</td>
<td>−</td>
</tr>
</tbody>
</table>

c. Relativization: Contrastive [±AN]

<table>
<thead>
<tr>
<th>3.EL</th>
<th>3.HU</th>
<th>3.AN</th>
<th>3.IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.EL</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3.HU</td>
<td>−</td>
<td>*</td>
<td>✓</td>
</tr>
<tr>
<td>3.AN</td>
<td>✓</td>
<td>✓</td>
<td>−</td>
</tr>
<tr>
<td>3.IN</td>
<td>✓</td>
<td>✓</td>
<td>−</td>
</tr>
</tbody>
</table>

Clearly, adding Matched Values does not account for the GCC pattern in Yatzachi, where just the bottom two rows should be ruled out.

Moreover, relativizing to contrastive features also predicts GCC patterns which are highly implausible given our Growing Staircase and Rising Floor generalizations.

(36) a. [±HU], Contrastive [±HU]

<table>
<thead>
<tr>
<th>3.EL</th>
<th>3.HU</th>
<th>3.AN</th>
<th>3.IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.EL</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
</tr>
<tr>
<td>3.HU</td>
<td>✓</td>
<td>−</td>
<td>✓</td>
</tr>
<tr>
<td>3.AN</td>
<td>✓</td>
<td>−</td>
<td>✓</td>
</tr>
<tr>
<td>3.IN</td>
<td>✓</td>
<td>✓</td>
<td>−</td>
</tr>
</tbody>
</table>

b. [±EL], Contrastive [±AN]

<table>
<thead>
<tr>
<th>3.EL</th>
<th>3.HU</th>
<th>3.AN</th>
<th>3.IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.EL</td>
<td>−</td>
<td>*</td>
<td>✓</td>
</tr>
<tr>
<td>3.HU</td>
<td>✓</td>
<td>−</td>
<td>✓</td>
</tr>
<tr>
<td>3.AN</td>
<td>*</td>
<td>✓</td>
<td>−</td>
</tr>
<tr>
<td>3.IN</td>
<td>*</td>
<td>✓</td>
<td>−</td>
</tr>
</tbody>
</table>

While a parallel approach with an intervention condition like Contiguous Agree accounts for most GCC patterns, it runs into problems with the GCC in Yatzachi.

5 The proposal

We adapt Nevins’ parallel theory by loosening the definition of Contiguous Agree to allow for a broader class of interveners:

(37) $P_{[\pm F/\pm F]}$ where [+F] entails [+F]

-CL

$P_{[\pm F/\pm F]}$

[CL − F]

[CL + F]

(38) Liberal Contiguous Agree

For a probe P relativized to features [+F]/[±F], where [±F] ⊆ [+F], with a goal G that bears [±F], there can be no G' such that:

(i) P c-commands G' and G' c-commands G, and
(ii) G' does not bear [±F].

Not only is a probe relativized to a feature that it is looking for ([+F]), but also for an intervention feature ([P]), which must entail — i.e., be at least as specific as — [+F].

Thus, Nevins’ Contiguous Agree is a subcase of Liberal Contiguous Agree in which [+F] = [±F]. The new constraint has different consequences when [±F] ⊆ [+F], including the ability to capture Yatzachi.

5.1 The basic mechanics

For Zoogocho, Laxopa, and Yalalag (languages predicted under Nevins’ original Contiguous Agree) the probe is relativized to two identical features. In Zoogocho, for instance, it is relativized to [+AN]/[+AN].

(39) Zoogocho

a. $3.AN \gg 3.IN$

b. $3.IN \gg 3.AN$

While a parallel approach with an intervention condition like Contiguous Agree accounts for most GCC patterns, it runs into problems with the GCC in Yatzachi.
5.2 Dealing with Yatzachi

Recall that the GCC pattern in Yatzachi is not derived by Nevins' original Contiguous Agree because the highest clitic in any cluster must always be [+HL] (though [−HL] subject clitics are permitted outside of clusters).

With Liberal Contiguous Agree, the probe in Yatzachi can be relativized to [+v/+HL]. This rules out clusters in which the lower clitic is [+v] (i.e., it has gender of any kind) and the higher clitic is [−HL].

\[(40) \quad \text{a. } 3.HU \gg 3.AN \quad \text{b. } 3.AN \gg 3.IN \]

In fact, this derives the Rising Floor Generalization, if Zoogocho is conceived of as ruling out the entire bottom row of a paradigm.

\[
\begin{array}{ccccccc}
\text{Zoogocho} = & [+v/+AN] & \text{Yatzachi} = & [+v/+HL] & \text{[+v/+EL] (unattested)} & \text{[+v/+AN]/[+AN]} & \text{[+v/+v]} \\
3.IN & * & * & * & 3.IN & * & * & * \\
\end{array}
\]

5.3 Typological predictions

There are 10 possible relativizations for probes, assuming Liberal Contiguous Agree as a constraint on Multiple Agree.

\[(41) \quad [+v/+EL] \quad [+v/+v] \quad [+HL]/[+HL] \quad [+v/+AN] \quad [+AN]/[+AN] \quad [+v/+v] \]

Despite there being 1024 \(2^{10}\) combinations of these relativizations, there are only 28 extensionally distinct languages predicted, because many of these probes have overlapping consequences.

There are two ways this typology might plausibly be restricted even further, so that it approximates the attested GCC patterns more closely:

- Many of these languages differ solely in the grammaticality of one or more totally identical clitic combinations, e.g. \textsc{IN} \gg \textsc{IN} in \(L_2\) and \(L_4\). Such illicit combinations might also be attributed to a morphological haplology constraint. It is difficult to resolve this analytical uncertainty, which might in principle even extend to the language learner, cf. Han et al. (2007).
- Ignoring differences between languages in identical clitic clusters yields just 13 distinct surface patterns.

- The relativizations for the probes in Zoogocho, Laxopa, and Yalalag stand in a subset relation to one another (31). This may reflect a more general constraint, along the lines of Béjar and Rezac (2009), who require that, if a probe looks for some feature, it also look for every feature it entails.
6 Conclusion and future prospects

These GCC effects in Zapotec look very similar to the more familiar PCC. But they provide a new window into the source of these ‘qCC’ patterns:

- While the PCC constrains clitic clusters based on three features (\(\pi\), Pa, AU), the GCC involves four features (\(\gamma\), AN, HU, EL), revealing important patterns that were not readily apparent in the smaller PCC paradigms.
- Our account of these patterns appeals to Liberal Contiguous Agree (38), an intervention condition on Multiple Agree inspired by Nevins’ (2007, 2011) Contiguous Agree.

There are additional patterns which the ultimate account of qCCs must address. Zoogocho, Laxopa, Yalalag, and Yatzachi all have the Strong PCC. Another Zapotec variety, Teotitlán del Valle, is even stricter, ruling out all human objects.

\[\text{(43) Moving Wall Generalization} \]

For any subject–object clitic cluster, if the object clitic cannot be gender G, then it cannot be gender G’, where G’ > G on the hierarchy.

How far to the right a ‘wall’ of stars is can vary: if a column is ungrammatical, so are all columns to its left.

Liberal Contiguous Agree is, perhaps, an unusual intervention constraint. Future work will have to address how to square this condition — which allows intervention between a probe and its goal, as long as it is of a certain kind — and the usual locality condition on Agree, which prohibits intervention to ensure closest search.

References

