The Atlantic coastal US had a 12-year period without hurricane landfalls of major intensity until Hurricane Harvey in 2017. Harvey is known as one of the costliest tropical cyclones on record, tied with Hurricane Katrina.

MOTIVATION
- How has the overall rate of movement from starting location to ending location changed with time?
- Are hurricanes moving further North?
- What factors led to the 12-year period between major hurricane landfalls?
- What environmental factors contribute to the changes over time?

DATA DESCRIPTION
We utilize satellite data in the form of NetCDF, recorded daily at 6-hour intervals from NASA Modern-era Retrospective Analysis for Research and Applications (MERRA 2) and Japanese Meteorological Agency – 55 year Reanalysis Data (JRA). We also combine the National Hurricane Center’s North Atlantic historical hurricane data (HURRDAT2).

APPROACH
To analyze hurricane movement we model the overall average movement rate (the rate at which a hurricane moves from starting point to finishing point, across the map, in miles per hour) for each hurricane as a function of time (seasons). We can then make inference about the changes in rate over time.

Models

Model 1:
Let y_j be the overall average movement rate of hurricane j in season t. Then let $θ_j$ be the average rate of hurricane movement for all hurricanes in season t, $t = (1980, ..., 2017)$. We set up a Bayesian hierarchical model to explore the changes in average rate across each year.

$$y_j | θ_j, σ^2 ∼ N(θ_j, σ^2) \quad t = 1, ..., T; j = 1, ..., m_2$$

$$θ_j | μ, τ^2 ∼ N(μ, τ^2)$$

$$σ^2 | ϕ_0, ϕ_2 ∼ IG(ϕ_0, ϕ_2)$$

$$μ ∼ N(μ_0, ω).$$

We have assigned conjugate priors and select hyperparameters $ϕ_0, ϕ_2, ω, α_j, β_j$ so that $θ_j$ reflect the data. We apply a Gibbs sampling algorithm to draw from the full posterior distribution.

Model 2:
Note that model 1 relies on the hurricane count for each year, m_t. Thus, we also seek to analyze the changes in hurricane counts over time. Let m_t be the total hurricane count for hurricane season t. Let $λ_t$ be the rate of hurricane occurrence for season t.

$$m_t ∼ Pois(λ_t) \quad t = 1, ..., T$$

$$λ_t ∼ Gamma(α, β)$$

We assign non-informative values to $α, β$ and $α$ and apply a Gibbs sampling algorithm to explore the posterior distributions.

CONCLUSION & FUTURE WORK
We hope to explore the factors contributing to the decrease in the overall average movement rate (Figure 4) by incorporating pressure, wind speed, El Niño-Southern Oscillation Index, and other variables. From figures 5-6, predicting a year in which an abnormally high number of hurricanes occurs, such as in 2005, would be useful.