1. Introduction

- Antecedents ruled out by syntactic binding constraints are shown to still influence online processing of anaphora at some stages [1, 4, 5].
- Binding constraints thus do not make antecedents strictly inaccessible throughout processing.
- Our goal: generalize these findings by looking at inter-sentential anaphoric relations.
- Accessibility of antecedents across sentence boundaries depends on discourse factors.
- In semantic frameworks, negative quantifiers (among others) form inaccessible antecedents [2, 3, 6].

(1) a. A man walks. He whistles.
 #No man walks. He whistles.

- Such negative NPs could therefore be expected to be discarded as possible antecedents early on.

2. Basic strategy

- We use short scenario’s consisting of two sentences and a follow-up question.
- The first sentence contains a definite subject and a negative object.
- The second sentence contains a pronoun.
- By varying the gender of the pronoun and object, we create conditions in which both subject and object could either match or mismatch the gender of the pronoun.
- If inaccessible antecedents do not affect processing of anaphora at all, a difference in gender of the object NP is not expected to have an effect on RTs.

3. Experiment 1: self-paced reading

- Example test scenario:

 De professor besprak met
 The professor discussed with
 2. Gender of the object: OBJECT MATCH vs. OBJECT MIS

 De hele week lag
 the whole week
 3. Gender of the pronoun: SUBJECT MATCH vs. SUBJECT MIS

 hij
 he
 4. Results Experiment 1

- To not expose participants to infelicitous items, subject NPs only stereotypically refer to male characters.
- Participants can reanalyze the subject’s gender in SUBJECT MIS cases, but this is a marked strategy.
- 28 participants; 5 practice items; 32 targets; 32 fillers.

4. Results Experiment 1

- [Off-line judgements: pronouns resolved as subjects]

<table>
<thead>
<tr>
<th>SUBJ</th>
<th>OBJ</th>
<th>NEG</th>
<th>INDEF</th>
<th>NEG</th>
<th>INDEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATCH</td>
<td>MATCH</td>
<td>88</td>
<td>86</td>
<td>84</td>
<td>62</td>
</tr>
<tr>
<td>MATCH</td>
<td>MIS</td>
<td>95</td>
<td>91</td>
<td>94</td>
<td>91</td>
</tr>
<tr>
<td>MISS</td>
<td>MATCH</td>
<td>66</td>
<td>29</td>
<td>67</td>
<td>35</td>
</tr>
<tr>
<td>MISS</td>
<td>MISS</td>
<td>71</td>
<td>66</td>
<td>78</td>
<td>82</td>
</tr>
</tbody>
</table>

- In INDEF-MIS-MIS cases only 66% subjects.
- 8 items removed because gender of the object should not be reinterpretable (new results on the right).

5. Summary

Experiment 1:

- Results are in line with findings of experiments based on syntactically inaccessible antecedents.
- [Effect 1] likely due to the violation of stereotypically.
- Both [Effect 2] and [Effect 3] show that inaccessible antecedents have an effect on online sentence processing.
- [Effect 2] suggests that the inaccessible antecedent affects reading times even when the referent in more prominent subject position matches the gender of the pronoun.
- [Effect 3] + [Effect 4] show that the match in gender of the inaccessible antecedent inhibits processing when the accessible antecedent is mismatched in gender.
- The high percentages of objects as answers in off-line judgments indicated that participants could make the entity introduced by the object accessible, possibly by accommodating discourse referents.

6. Experiment 2: follow-up study

Similar design as Exp 1, with some minor changes in the first sentence:

- We strongly force the disambiguation of the object’s gender by using mostly kinship terms.
- Scenarios are created in such a way that makes the accommodation of discourse referents impossible.
- Example first sentence:

 (2) De professor heeft { geen/en } { zoon/dochter }.
 The professor has {no/a} {son/daughter}.

- [Off-line judgements: pronouns resolved as subjects]

<table>
<thead>
<tr>
<th>SUBJ</th>
<th>OBJ</th>
<th>NEG</th>
<th>INDEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATCH</td>
<td>MATCH</td>
<td>94</td>
<td>60</td>
</tr>
<tr>
<td>MATCH</td>
<td>MIS</td>
<td>96</td>
<td>98</td>
</tr>
<tr>
<td>MISS</td>
<td>MATCH</td>
<td>88</td>
<td>26</td>
</tr>
<tr>
<td>MISS</td>
<td>MISS</td>
<td>97</td>
<td>81</td>
</tr>
</tbody>
</table>

- In progress – eye-tracking study on the newly design items

Selected References