and have found that most combinations are allowed; however, certain gaps in the typology emerge. While a larger database of languages would need to be consulted before we reach any safe conclusion, certain implicational universals can be enunciated at this point.

According to the first implicational universal (24), if a language has an edge geminate, but no consonant clusters on that edge, then the EG patterns as moraic. The second universal (25) states that if a language has an EG that patterns as non-moraic and allows for consonant clusters on that edge, then that cluster must pattern as non-moraic too. We have also observed that a few languages demonstrate geminates at both edges of the word, but their behaviour does not have to be uniform in terms of weight, i.e. weightful geminates at one edge may co-occur with weightful geminates at the other edge, but do not have to.

As mentioned, certain asymmetries that arise in the typology of geminates can be understood through already available theoretical machinery. A fuller survey, however, besides examining more languages (ideally newly documented ones), would also need to consider additional parameters. For example, does it matter whether the EG is derived or underlyingly present? How do partial geminates (i.e. nasal + homorganic clusters) behave? Do they pattern like EGs or can they exhibit distinct behaviour? Future research should seek to answer these questions too and examine the implications, if any, for the typology of edge geminates.

Acknowledgements

We are grateful to two anonymous reviewers for helpful comments and interesting ways to restate the universals we propose here, as well as to the audience of the MIT Linguistics Colloquium, and especially Donca Steriade, for useful feedback. All remaining errors are our own.

The somewhat restricted database is partly due to the inherently limited number of languages that possess edge geminates. In some cases the situation is additionally hindered by lack of or insufficient information relevant to EGs and/or clusters. Some languages are reported to also possess EGs, but have not been included in this survey (cf. section 11.1), e.g. Estonian final geminates (Dmitrieva 2012) or Circassian initial geminates (Muller 2001). We believe this omission does not disturb the main findings outlined earlier. Inclusion of those languages, however, as well as documentation of new languages with EGs, would be likely to benefit and enrich the present typology.

12

A prosodic account of consonant gemination in Japanese loanwords

JUNKO ITO, HARUO KUBOZONO, AND ARMIN MESTER

12.1 Introduction

The distribution of geminate consonants in Japanese loanwords is notoriously complex. On the one hand, there are intrinsic factors. Some consonants, in particular obstruents (called sokuon when geminated), are more prone to gemination than sonorants. Segmental features lead to further distinctions: voiceless obstruents geminate more easily than voiced obstruents (1a), and some types of fricatives geminate more easily than others (1b) (dots indicate syllable boundaries, with initial and final syllable boundaries usually not marked, and an accent mark after a vowel indicates that it is accented).

(1) Segmental factors

a. Voicing type: voiceless vs. voiced obstruents

<table>
<thead>
<tr>
<th>Gemination</th>
<th>No gemination</th>
</tr>
</thead>
<tbody>
<tr>
<td>cap/kyu'p.pu</td>
<td>cab/kyu'.bu</td>
</tr>
<tr>
<td>lock/ro'k.ku</td>
<td>log/ro'.gu</td>
</tr>
</tbody>
</table>

b. Fricative type: [ʃ] vs. [s], [ʃ] vs. [ʃ]

<table>
<thead>
<tr>
<th>Gemination</th>
<th>No gemination</th>
</tr>
</thead>
<tbody>
<tr>
<td>bush/bu'ʃʃu</td>
<td>bus/ba'.su</td>
</tr>
<tr>
<td>Bach/ba'ʃha</td>
<td>puff/pa'.fu</td>
</tr>
</tbody>
</table>

On the other hand, one and the same consonant is more likely to geminate in some phonological contexts than in others (2).
(2) Positional factors

<table>
<thead>
<tr>
<th>Gemination</th>
<th>No gemination</th>
</tr>
</thead>
<tbody>
<tr>
<td>p cap kya'p.pu</td>
<td>captain kya'.pu.ten</td>
</tr>
<tr>
<td>p apple a'p.pu.ru</td>
<td>chapel ŋa'.pe.ru</td>
</tr>
<tr>
<td>p happy ha'p.pi</td>
<td>happiness ha'.pi.ne.su</td>
</tr>
<tr>
<td>t market ma'a.ket.to</td>
<td>marketing ma'a.ke.tin.gu</td>
</tr>
<tr>
<td>k pack pa'k.ku</td>
<td>park pa'a.ku</td>
</tr>
<tr>
<td>k tax ta'k.ku.su</td>
<td>tact ta'.ku.to</td>
</tr>
<tr>
<td>g frog fu'r.o'g.gu</td>
<td>log ro'.gu</td>
</tr>
<tr>
<td>s listen ri's.sun</td>
<td>listener ri'.su.naa</td>
</tr>
<tr>
<td>s message me's.see.dʒi</td>
<td>mess me'.su</td>
</tr>
</tbody>
</table>

This chapter discusses how the distribution of geminates as opposed to singletons (e.g. /pp/, /dd/, /mm/ vs. /p/, /d/, /m/) is determined in loanword adaptations in Japanese, a language whose native system employs consonant length contrastively. We propose an output-oriented analysis to account for both new and previously established generalizations in the framework of Optimality Theory (OT; Prince and Smolensky 1993) and demonstrate that consonant gemination in Japanese loanwords is caused by two different factors, one of them involving prosodic faithfulness, the other prosodic markedness. Analyses that champion only one of these, as we will show, remain incomplete.

First, prosodic faithfulness to the source word is involved when gemination is a way of preserving word-final codahood, or moraicity, in the English source words (see Lovins 1975) (there is a significant literature in recent decades; we will return to details later).

The second factor is prosodic markedness. Significant higher-level prosodic factors that are part of the native system are also at work and result in gemination. For example, we will see the workings of the Initial Foot constraint, obliging prosodic words to start out with a bimoraic foot, not with an unfooted syllable.

The chapter is organized as follows. We will first sketch the basic structure of modern Tokyo Japanese, with a main focus on geminate consonants in its native phonology (section 12.2). We will then present our basic claim and analysis about consonant gemination in Japanese loanwords (section 12.3). We will demonstrate in this section how our prosodic analysis is different from previous analyses based solely on input–output correspondences. Sections 12.4 and 12.5 are the core part of this chapter, in which our output-oriented analysis is illustrated for each and every basic fact regarding gemination and non-gemination. Segmental conditions on gemination are discussed in section 12.4, and prosodic conditions in section 12.5. Previous studies on consonant gemination in Japanese loanwords are also critically discussed throughout the chapter. The final section gives a summary of our analysis and future agenda.

12.2 Basic structures of native Japanese phonology

12.2.1 Segmental length

As is well known, consonant length as well as vowel length is distinctive in Japanese phonology (Shibatani 1990; Kawagoe 2015; Kawahara 2015b). Thus, there are many minimal pairs including those in (3) that contrast a single consonant (singleton) with a geminated consonant (geminate). Geminates appear only word-medially.

(3) Singleton and geminate segmental minimal pairs

<table>
<thead>
<tr>
<th>Singleton</th>
<th>Geminate</th>
</tr>
</thead>
<tbody>
<tr>
<td>ki.ta</td>
<td>'north'</td>
</tr>
<tr>
<td>ju.ʧoo</td>
<td>'assertion'</td>
</tr>
<tr>
<td>sa.ʧi</td>
<td>'point, edge'</td>
</tr>
<tr>
<td>ka.ʧa</td>
<td>'freight car'</td>
</tr>
<tr>
<td>ka.ʧen</td>
<td>'underline'</td>
</tr>
<tr>
<td>ki.t.ta</td>
<td>'cut (past)'</td>
</tr>
<tr>
<td>fut.ʧoo</td>
<td>'business trip'</td>
</tr>
<tr>
<td>sa.ki</td>
<td>'a short time ago'</td>
</tr>
<tr>
<td>ka.ʧa</td>
<td>'pulley'</td>
</tr>
<tr>
<td>kas.ʧen</td>
<td>'battle'</td>
</tr>
</tbody>
</table>

Phonetic studies have shown that, other things being equal, consonant length is signalled primarily by consonant duration (Fujisaki and Sugito 1977; Han 1994). Thus, the closure duration of /t/ is much longer in /ki'tta/ 'cut (past)' than in /kita/ 'north'. Geminate fricatives have a much longer frication duration than singletons: e.g. /s/ is considerably longer in /kassen/ 'battle' than in /kasen/ 'battle'.

While consonant length is contrastive in Japanese, not all consonants have a geminate counterpart. First, no voiced obstruent (b, d, g) can be geminated in the native (Yamato and Sino-Japanese) phonology. This is illustrated, for example, by the fact that in the course of history /tada/ 'only' turned into /tatta/, not /tadda/, when geminated for emphasis. It follows from this and other facts that the native phonology of Japanese is subject to the constraint in (4), which has a well-known aerodynamic basis (Kawahara 2015b: 53–56) and cross-linguistic support. The presence of voiced obstruent geminates always implies the presence of voiceless obstruent geminates: No language bans just voiceless obstruent geminates while allowing voiced obstruent geminates (Maddieson 1984).

(4) NoGeminateVoicedObstruent (NoGemVoiObs): Voiced obstruent geminates are prohibited.

We will return to the details later, when we show that further differentiation between segment types might be warranted for Japanese. Second, voiceless fricatives fall into two types: those that can be geminated ([s] and [ʃ]) as shown in (5), and those that cannot ([h]).

1 Nasals have geminated counterparts (/kammuri/ 'crown', /kannon/ 'goddess of mercy') where the coda portion is considered a moraic nasal. Glides following moraic nasals are best understood as geminate glides with an initial nasalized portion (fuNWari → fuwwari 'floating' boNyari → boyyari 'unfocused'; see Mester and Ito 1989: 275; Vance 2008: 96).
(5) kaisen ‘underline’ vs. kasisen ‘battle’
ka_fa ‘freight car’ vs. kafJa ‘pulley’

Note that /h/ can be geminated in several independent contexts in the native phonology but, when geminated, alternates with [pp] rather than [hh], for historical reasons. This is true irrespective of the following vowel, which determines the phonetic quality of /h/ ([ç], [ç] , or [h]) in Yamato and Sino-Japanese words. Some examples are given in (6), and we return to the more recent loanwords such as /bah.ha/ ‘Bach’ in section 12.4.4.

(6) a. ha ‘leaf’ ~ hap_pa ‘leaf’
b. ni.hon ‘Japan’ ~ nip.pon ‘Japan’
c. a.ho ‘fool’ ~ ap.po ‘fool (colloquial)’
d. /it/ ‘one’ + hu [fu] ‘husband’ → ip.pu ‘one husband’
e. /it/ ‘one’ + hi [çi] ‘day’ → ip.pi ‘first day of the month’

12.2.2 Syllable structure constraints

As in many languages, only a single consonant can fill the onset and coda position in a well-formed Japanese syllable. We state this unviolated constraint as NoComplex in (7) (after Prince and Smolensky 1993), combining NoComplexOnset and NoComplexCoda.

(7) NoComplexSyllableMargins (NoComplex): No more than a single consonant can fill the onset or the coda position in a syllable.

NoComplex is responsible for triggering epenthesia in the adaptation of many loanwords (such as plan → puran). Besides this complexity restriction, there is another condition on the type of allowed codas (see Ito and Mester 2015: 370–371 and work cited there).

(8) CodaCondition (CodaCond): The coda can only be the first part of a geminate or a moraic nasal.3

The effects of CodaCond can be seen in the verbal inflectional paradigm, where it is responsible for both gemination (/kir-ta/ ‘cut-past’ → kita) and place assimilation (/kam-ta/ ‘chew-past’ → kanda).

Finally, there is an important size restriction on the syllable, which can be gleaned from the fact that geminate consonants cannot occur after a long vowel or diphthong. Thus, in the native phonology, toki, tokki, and tooki are all legal forms, but *tookki is not (9).

2 Modern Japanese /h/ derives from old Japanese /p/ (Frellesvig 2010). In the native vocabulary of Japanese, /h/ has three allophones: [ç] and [ç] appear before /i/ and /u/, respectively, while [h] appears before other vowels; [pp] occurs in reduplication (6a), in emphatic forms (6b,c), and in compound-medial positions via regressive place assimilation (6d,e).

3 In final position, the moraic nasal realized as a dorso-uvular [ç] with weak constriction; elsewhere it assimilates to the place of articulation of the following segment, with details depending on the type of segment involved (see Vance 2008: 93–101).

Kubozono (1999) attributes this distributional restriction to a constraint on the optimal size of the syllable, which permits light (monomoraic) and heavy (bimoraic) syllables, but not superheavy (trimoraic) ones. In Japanese, as in other languages, long vowels and diphthongs count as two moras, while the moraic nasal as well as the first half of geminate consonants counts as one mora.

(10) NoSuperHeavySyllables (NoSuperHeavy): Trimoraic syllables (σG=3) are banned.

The same constraint accounts for the seemingly peculiar loanword adaptation process known as ‘pre-nasal vowel shortening’ (Lovins 1975). This process, illustrated in (11), shortens long vowels and diphthongs before a moraic nasal, thus creating bimoraic syllables out of a string that would otherwise result in trimoraic syllables (see Kubozono 1999, 2015 for more evidence for the trimoraic syllable ban in Japanese).

(11) Pre-nasal vowel shortening4

<table>
<thead>
<tr>
<th>Source</th>
<th>Loan</th>
</tr>
</thead>
<tbody>
<tr>
<td>foundation</td>
<td>fan.dee.fon</td>
</tr>
<tr>
<td>stainless</td>
<td>su.tein.re.su</td>
</tr>
<tr>
<td>Cambridge</td>
<td>kein.br.idåi</td>
</tr>
<tr>
<td>corned beef</td>
<td>kon.bii.fu</td>
</tr>
</tbody>
</table>

12.2.3 Prosodic form

Native phonology exhibits a striking tendency to favour Heavy-Light (HL) and Heavy-Heavy (HH) sequences, and to disfavour Light-Heavy (LH) sequences in word-final position. This tendency is observed in various independent phenomena in Japanese, one of which is the zuzya-go formation discussed in depth by Ito et al. (1996). Züzya-go (ZG) is a jazz musicians’ secret language involving metathesis: e.g. /ma.nee.dÅa/ → /dÅa.ma.nee/ ‘manager’. The input to this process can be any word with any prosodic structure, but its output is severely constrained in prosodic terms. This is illustrated with monosyllabic and disyllabic input forms in (12).

4 As a reviewer correctly points out, there are sporadic exceptions to trimoraic shortening involving the /aw/ diphthong such as /raun.dÅi/ ‘lounge’ and /maundo/ ‘mound’ from English.
There are several other independent processes that display a bias towards HL and HH, and against LH outputs in Japanese (see Kubozono 2003 for more evidence).

Rather than a prosodic form constraint directly banning LH sequences in word-final position (adopted in Kubozono et al. 2009), our proposal here is that the real generalization can be found at a prosodic level higher than the syllable, namely, the foot level. Given the standard assumption that Japanese has bimoraic foot structure (see Poser 1990 for evidence), sequences of syllables are maximally parsed as either (LL) or (H), with leftover light syllables remaining unparsed. Thus, the relevant forms in question are parsed as in (15), where (L) and (H) demarcate feet and prosodic words, respectively.

| (15) | a. \([\omega (rH) (rH)]\)
b. \([\omega rH \{yH\}]\)
c. \(*[\omega L \{yH\}]\) |

Viewed in terms of footing, we see immediately what the problem is with (15c): it violates the constraint INITIALFOOT, which requires prosodic words to begin with a foot left-aligned with the prosodic word (Ito and Mester 1992: 31).

12.2.4 Accent structure

In the light of more recent work, (Tokyo) Japanese also exhibits a certain bias with respect to accent structure. It permits two major accent patterns: accented and unaccented (McCawley 1968; Kubozono 2006). These are together with other constraints, is also responsible for consonant gemination in loanwords.

In the Yamato and Sino-Japanese lexicon, words with an accent on the antepenultimate mora, such as *i'nōri* 'life', overwhelm those with an accent on the penultimate or final mora of a word to the extent that it is a noun (Martin 1952: 33). Seen conversely, accents on the penultimate or final mora of a word are avoided.

In the Yamato and Sino-Japanese lexicon, words with an accent on the antepenultimate mora, such as *i'nōri* 'life', overwhelm those with an accent on the penultimate or final mora of a word to the extent that it is a noun (Martin 1952: 33). Seen conversely, accents on the penultimate or final mora of a word are avoided.

In the Yamato and Sino-Japanese lexicon, words with an accent on the antepenultimate mora, such as *i'nōri* 'life', overwhelm those with an accent on the penultimate or final mora of a word to the extent that it is a noun (Martin 1952: 33). Seen conversely, accents on the penultimate or final mora of a word are avoided.

In the Yamato and Sino-Japanese lexicon, words with an accent on the antepenultimate mora, such as *i'nōri* 'life', overwhelm those with an accent on the penultimate or final mora of a word to the extent that it is a noun (Martin 1952: 33). Seen conversely, accents on the penultimate or final mora of a word are avoided.

In the Yamato and Sino-Japanese lexicon, words with an accent on the antepenultimate mora, such as *i'nōri* 'life', overwhelm those with an accent on the penultimate or final mora of a word to the extent that it is a noun (Martin 1952: 33). Seen conversely, accents on the penultimate or final mora of a word are avoided.
Consonant gemination in Japanese loanwords

Although this unifying explanation is quite attractive, it is best implemented within an analysis with abstract stages of the derivation. In our output-based analysis couched in classical parallel OT (vs. Stratal OT, as in Kiparsky's 2003 analysis of Ancient Greek accent), there are several unresolved problems, in both analysis and description.

Descriptively, the generalization that such final /a/ is treated as extraprosodic appears to be limited in scope, holding only for words of exactly two or four moras (e.g. /ba'reru, ko'ndororu/). For words of other lengths, the expected antepenultimate accent arises, as following from bimoraic footing and NonFinality, as in /pa'ru)su 'pulse', /pi'ru)su 'Pilsener', /kuri(su)ma'su 'Christmas', /asu'pa(ra'ga)su 'asparagus', /go'ru)fu 'golf', /pi'ra)fu 'giraffe', /piro(gu'ra)fu 'polygraph', /piro(gu'ra)fu, /pa'ru)fu 'pudding' ('ke'to)fu 'kettle', or /tore(a'do)ru 'toreador'. If the final /a/ were extraprosodic here, we would incorrectly expect a penultimate mora accent in *pa'ru)su(<u) and *pi'ru)su(<u): NonFinality is not violated, due to the presence of the extraprosodic final /a/, so the predictions are different from ba'ree 'ballet' and pu'rin 'pudding', where *bar'e and *pur'in violate NonFinality. In 4µ-words such as asupa'gu)su 'asparagus' (or even longer words), extraprosodic final /a/ wrongly predicts either *asu'pa(ra'ga)su(<u) with pre-antepenultimate accent or *asu'pa(ra)gu)su(<u) (with penultimate accent, not the correct asupa'gu)su) with antepenult accent. Even among 4µ-words of the forms /LLLL/ and /HLL/ ending in /-ru/, which clearly go against the general trend for LL-final 4µ-words in being accentuated, there is also a significant number of unaccented words which have no accented variant (according to the NHK accent dictionary), such as ka'soru 'cursor', /ja'nu'reru 'channel', or /tel'eruu 'table'.

Analytically, the parsing of /CVrV/ as CVr.V violates the universal Onset constraint, whereby /VCV/ is required to be parsed as V.CV, with the medial C as an onset. This might arguably be circumvented by the final V being extraprosodic, but another more serious problem is the resulting surface syllable structure CVr..CVs, and .CVf,.CVs, violating ConACOND (8), which restricts codas to moraic nasals or the first parts of geminates. Since /r,s,f/ are singleton coda consonants, this would be the only instance in the entire Japanese phonology where the otherwise unviolated ConACOND would be violated in surface representations. It is beyond the scope of this chapter to pursue the ramifications which such ConACOND violations in output forms would entail, and we leave this interesting issue for future investigation.

12.3 Gemination vs. non-gemination

Most studies assume, either explicitly or implicitly, that consonant gemination in Japanese loanwords is triggered exclusively by a force to preserve the coda status of the consonant—or equivalently, the closed character of the syllable—in the source words (see e.g. Kunihiro 1963; Ohye 1967; Ohso 1971; Lovins 1975; Kawagoe.
like the proposed universal hierarchy. The universal markedness hierarchy on geminates, where geminate markedness correlates with sonorancy:

\[*GG \to *NN \to *OO \]

...
12.4 Segmental conditions on gemination

In this section, we present the main generalizations regarding which segments are more prone to gemination, and the constraints responsible for the difference. The factors involved concern the major phonological type distinctions in voicing (12.4.1), sonorancy (12.4.2), place (12.4.3), and manner (12.4.4). In order to not be side-tracked by non-segmental factors, we consider only source words that are monosyllabic CVC, with simple (including null) onset and simple coda. Since Japanese does not allow complex onsets or codas, other monosyllabic inputs like CCVC (drop), CVCC (duct), or CCVCC (tract) emerge with multiple epenthetic vowels, affecting the overall prosodic profile. As we will see in section 12.5, this in turn means that some prosodic structure constraints enter the picture. For CVC inputs, however, high-ranking CODA Cond will mean that the two relevant outputs are disyllabic, either the geminating CVC.CV or the non-geminating CV.CV. The former fulfills FAITH CooA but violates NoGEM, the latter violates FAITH CooA but fulfills NoGEM. Which of these is the preferred outcome is determined by the segmental type of the input coda consonant (henceforth marked as C).

12.4.1 Voicing

The major generalization that has been noted in all previous work is that voiceless stops are more prone to gemination than voiced ones. This is unsurprising, given that the native phonology of Japanese allows gemination of voiceless obstruents /p, t, k/, but not gemination of voiced obstruents /b, d, g/. As we saw in (3), sa.ki ‘point, edge’ turns into sakki ‘a short time ago’ as the physical notion expands to a temporal one, but tada ‘just’ underwent consonant devoicing as well when geminated for emphasis (see tableau (21)), but the contrast in (24) shows that the more specific NoGem-VoiObs constraint is ranked above FaithCoda. The OT tableau with FaithCoda sandwiched between the two NoGem-constraints shows the correct winning candidates being chosen.9

(25) Voicing difference

| Voiceless C: raC | rak | ru | rakgu |
| Voiceless C: raC | ru'k | ru | ru'gu |

(26) Sonorant coda inputs: no gemination

a. ha'mu *ham.mu ham
b. e'nu *en.nu the letter N
c. be'ru *ber.ru bell

We formulate the relevant constraint in (27), and illustrate the point in (28).

(27) NoGeminate-Sonorant (NoGem-Son): Sonorant geminates are prohibited.

(28) Sonorant C: ha'mu | ha'mu

Since sonorant consonants are also voiced, one might consider combining NoGem-VoiObs and NoGem-Son into one constraint, NoGem-VoiL. Although such a merged constraint would be unproblematic for the simple CVICl-situation analysed so far, there are good reasons to keep the voiced obstruent and the sonorant versions separate. First, the two constraints, NoGem-VoiObs and NoGem-Son, must be separate in the native phonology, where voiced obstruents and approximants (the rhotic /r/ and the glides /w/ and /y/) are not geminated, but nasals regularly are. We find native items like tomma ‘silly’ (see also footnote 1 for other examples of geminated sonorants in the native vocabulary), but the name Tom is ungeminated to mu, and not *tom.mu. Second, as we will see in section

9 While voiceless final obstruent virtually always geminate in CVC words, voiced obstruents mostly do not, but the details depend on place of articulation, and there are some instances of gemination: heldo ‘head’, boggu ‘bag’ vs. bagu ‘bug’, nobbu–nubu ‘knob’. We return to this point in section 13.4.3.

10 Codas /t/ usually appears as moraic nasal, e.g. pott ‘bread’, but can also appear with the epenthetic vowel as in CNN /tʃi enu enu/. Crucially, it does not geminate (*ennu), except in borrowings from French such as kannu ‘Cannes’ or ʒanna ‘Jeanne’, where the final nasal is released.
12.5, voiced obstruents do geminate under certain prosodic conditions (dora'ggu 'drug', *do'rugu, while sonorants do not (do'ramu 'drum', *dora'mmu). The cross-linguistic facts point in the same direction: Taylor (1985) showed in a typological survey that the presence of a sonorant geminate in a language generally implies the presence of at least one obstruent geminate, but not vice versa, and Kawahara et al. (2011) provide several arguments supporting the distinction between voiced obstruents geminates and sonorant geminates. In addition, there are processes turning sonorant geminates into obstruent geminates, but no processes going in the other direction. Examples are the occlusivization of geminate approximants in Berber and Luganda. Finally, there are processes degeminating only the most sonorant types of geminates: for example, in Sanskrit glides and rhotics were degeminated, but not lateral, nasal, and obstruent geminates.

12.4.3 Place of articulation

A closer survey of the gemination pattern reveals that place of articulation affects the geminability of C. Kawagoe (2015) (see also references cited there) notes that codas stops in the input are almost invariably geminated if they are voiceless (except in consonant clusters such as ask — asuku and tact — takuto). As (29) shows, this holds for all places of articulation, labial, coronal, and dorsal, in fulfillment of FAITHCODA. But among voiced stops, only the coronals geminate on a regular basis (e.g. paddo 'pad').

Our own survey data show the distribution in (30).

(30) Final /dgb/

<table>
<thead>
<tr>
<th>Final</th>
<th>CVD</th>
<th>CVG</th>
<th>CVB</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dgb/</td>
<td>88%</td>
<td>71%</td>
<td>29%</td>
</tr>
<tr>
<td>N = 123</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Among the voiced obstruent stops, the gemination constraints therefore need to distinguish between places of articulation, e.g. NoGEM-B >> NoGEM-G >> NoGEM-D.
We subsume the voiced fricative /z/ under the constraint banning gemination of voiced stops (31), which we now restate in (34).

(34) NoGEM-VoI0BS-[BGZ]: Gemination of voiced obstruents (peripheral or continuant) is prohibited.

The complication in the statement of (34) stems from the fact that /d/ needs to be excluded. This is perhaps an artifact—the ultimate analysis might involve a general constraint exempting voiced obstruents, as in (4) above, interacting with a constraint exempting /d/ from this ban, as discussed at the end of the previous section. The remaining voiceless segments in (33), the voiceless anterior fricatives, require a gemination constraint (35) of their own. An illustrative tableau appears in (36).

(35) NoGEM-VOICELESS-AnteriorFricatives/_[LV]: Gemination of voiceless anterior fricatives (/s/, /ʃ/) that are final in the source word is prohibited.

(36)

<table>
<thead>
<tr>
<th>Segment</th>
<th>NoGEM-ANT Fric/_[LV]</th>
<th>FaithCoda</th>
<th>NoGEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>tough</td>
<td>tafu</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tafu</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>bus</td>
<td>basu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>basu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rush</td>
<td>raʃfu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>raʃfu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mach</td>
<td>mahha</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mahha</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The NoGEM-ANT Fric/_[LV] constraint (35) is different from the other NoGEM constraints in that it is positionally restricted to word-final position (e.g. re'su 'less', ba su 'bus', ha'pinesu 'happiness', o'fu 'off', taʃfu 'tough', gu'raʃu 'graph', ka'adifu 'Cardiff'). Medially, /s/ and /ʃ/ occur geminated in certain prosodically motivated configurations (e.g. rʃ'sun 'listen', e see, 'essay', ha'ʃuru 'hustle', massa'deqi 'massage', ba'ʃia 'buffer', fə'ʃiuru 'shuffle') to be discussed in section 12.5. This is also the reason for not including /ʃ/ in (35): the avoidance of gemination in this case is not limited to word-final position but holds across the word (e.g. pa'ʃuru 'puzzle' and no'ʃuru 'nozzle', not *pa'ʃarə, *no'ʃaru), requiring a more general constraint, as in (35).

Recent work has raised the possibility that (35) is grounded in perceptual facts. Matsui (2012: 67) presents experimental evidence showing that word-final [-anterior] /ʃu/ and [+ anterior] /su/ are perceived in different ways by Japanese listeners. In the case of the (geminating) /ʃu/, a formant transition is observed between /ʃ/ and /u/, serving as a perceptual cue to gemination by marking the end of frication. In the case of the (non-geminating) /su/, no such formant transition is observed.

Summarizing so far, the five different gemination constraints are ranked with respect to FaithCoda in the way depicted in (37). In the following sections, we show that more specific versions of FaithCoda (20) and NonFinality (18) are needed, and that InitialFoot (16) plays a crucial role in explaining cases of gemination different from those seen so far. Since NoGEM-VoIObs-D and the general NoGEM are both ranked at the bottom of the hierarchy, we will henceforth regard the case of /d/ as being adequately included in the general constraint.

(37) NoGEM-VoIObs-BGZ NoGEM-SON NoGEM-ANT Fric-Fs/_[LV]

FaithCoda

12.5 Prosodic conditions on gemination

12.5.1 Prosodic faithfulness I: word-final vs. word-internal codas

In the preceding section, we considered only monosyllabic CV inputs, in order to focus on the difference in gaminability between segment types (voicing, place, and manner). We found gemination of /ʃ/ with /p, t, f, k/ (voiceless stops), /ʃ, h/ (non-anterior fricatives), and /d, dʒ, dʒ/ (voiced coronal stops). No gemination in /ʃ/ position was found with /b, g, z/ (peripheral voiced stops and voiced fricative), /s, ʃ/ (voiceless anterior fricatives), and /m, n, t/ (sonorants). For CV inputs, there is only one coda, which is also the word-final coda.

In polysyllabic words, we find a fundamental distinction between two different kinds of coda positions: word-final codas are geminated, but not word-internal codas. This is illustrated in (38), where we find word-final codas geminated whatever the length of the word, but word-internal codas ungeminated.
This means that the FATHCODA constraint (20) appealed to so far is too sweeping, and what we saw at work in section 12.4 was in fact a more restricted version of prosodic faithfulness targeting only word-final codas, as in (39).

(39) FATHCODA/_w

The pattern here is not exceptionless—there are cases of non-gemination of /b,g/ in CCV[C], such as su'ragu 'slag' and ku'rabu 'club'—but the majority pattern to be captured is clearly gemination, as in suno'bbu 'snob' and furo'ggu 'frog' (see (42) for summary statistics). Even for /b/, the most gemination-averse (only 5% gemination in CV[C]), we find 62.5% gemination in CCV[C].

(42) Final /dgb/:

<table>
<thead>
<tr>
<th>Word-final coda: geminated</th>
<th>Word-internal coda: ungeminated</th>
</tr>
</thead>
<tbody>
<tr>
<td>p a'p.pu</td>
<td>kya.pu.ten</td>
</tr>
<tr>
<td>a'p.pu</td>
<td>kya.pu.ten</td>
</tr>
<tr>
<td>goj',p.pu</td>
<td>kya.pu.ten</td>
</tr>
<tr>
<td>k do'k.ku</td>
<td>kya.pu.ten</td>
</tr>
<tr>
<td>pik.ku</td>
<td>kya.pu.ten</td>
</tr>
<tr>
<td>kura'f,k.ku</td>
<td>kya.pu.ten</td>
</tr>
<tr>
<td>t a't.to</td>
<td>kya.pu.ten</td>
</tr>
<tr>
<td>ba'ge't.to</td>
<td>kya.pu.ten</td>
</tr>
<tr>
<td>ma'a'ket.to</td>
<td>kya.pu.ten</td>
</tr>
<tr>
<td>d kyu'u,pid.do</td>
<td>kya.pu.ten</td>
</tr>
<tr>
<td>wa'n,ted.do</td>
<td>kya.pu.ten</td>
</tr>
<tr>
<td>ba'd.do</td>
<td>kya.pu.ten</td>
</tr>
<tr>
<td>f haf'Ju</td>
<td>kya.pu.ten</td>
</tr>
<tr>
<td>h[c]</td>
<td>kya.pu.ten</td>
</tr>
<tr>
<td>T nat'tsu</td>
<td>kya.pu.ten</td>
</tr>
</tbody>
</table>

Tableau (40) shows that, different from FATHCODA/_w, the general FATHCODA constraint ranks below general NoGEM and cannot command its violation.

<table>
<thead>
<tr>
<th>doctor</th>
<th>FATHCODA/_w</th>
<th>NoGEM</th>
<th>FATHCODA</th>
</tr>
</thead>
<tbody>
<tr>
<td>dok.ku</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>do'k.ku.taa</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>kyuu.pid.do</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>.bat.to.raa</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

This prosodic faithfulness analysis singling out the word-final coda received further support in work by Kubozono et al. (2013), who not only replicate the final/medial coda contrast in (38) with nonce words, but show in addition that what Japanese listeners are sensitive to is not position per se, but phonetic differences in the English source words relating to duration and pitch that are associated with word-final vs. word-medial position. One way of interpreting this is to take the constraint in (39) to be sensitive to significant phonetic detail.

12.5.2 Prosodic markedness I: NonFINALITY

We had seen in section 12.4 that three types of consonants do not geminate word-finally for CV[C] inputs: /b,g,z/ (NoGEM-V0OrBas[CGZ]), /r,m,n/ (NoGEM-Son), and /s,f/ (NoGEM-ANTFric[SF]). It comes as a surprise, then, that word-final /b,g,z/ (41a-c) usually do geminate when the source syllable is CCV[C], with a complex onset. /d/ also geminates (bureddo 'bread', etc.) here, which comes as no surprise since it also geminates in CV[C], just like /p,t,k/, /s,t,k/, /b,t,k/, and /f/. This prosodic faithfulness analysis singling out the word-final coda received further support in work by Kubozono et al. (2013), who not only replicate the final/medial coda contrast in (38) with nonce words, but show in addition that what Japanese listeners are sensitive to is not position per se, but phonetic differences in the English
One of the reasons, we claim, is that the avoidance of a word-final head foot is much stronger in non-minimal words than in strictly minimal words (i.e. consisting of exactly one foot). We acknowledge this by stating a separate and higher-ranking constraint \(\text{NonFinality-XF}^r \) for non-minimal words.\(^{14}\)

\[
(43) \quad \text{NonFinality-XF}^r (\text{NonFin-XF}^r): \text{The head foot (Ft') is not final in a non-minimal prosodic word.}
\]

The general \(\text{NonFinality} \) constraint given earlier in (18) covering all words, including minimal ones, ranks rather low, subordinate even to the general \(\text{NoGem} \) constraint, and plays little role in the analysis. Effects of \(\text{NonFinality-XF}^r \) are shown in (44).

\[
(44) \quad (\text{po'te})\text{to} * (\text{po'te'}\text{to}) \quad \text{potato} \\
(\text{te're}b\text{i'}) * (\text{te're'}b\text{i'}) \quad \text{television}
\]

Tableau (45) shows the crucial interaction (epenthetic vowels are marked by capitalization): \(\text{NonFin-XF}^r \) dominates \(\text{NoGem-VorObs} \) and commands its violation in \(\text{fu}(\text{ro'g})\text{gu} \) (45c), which is superior to \(*\text{fu}(\text{ro'gu}) \) (45c). The minimal word \(\text{ro'gu} \), however, violates only bottom-ranked general \(\text{NonFin} \), hence no violation of \(\text{NoGem-VorObs} \) is called for, and \(\text{ro'gu} \) (45a) emerges as the winner. \(\text{FaithCodal}_{\text{JWg}} \) also ranked below \(\text{NoGem-VorObs} \), is also unable to demand gemination.

\[
(45) \quad \begin{array}{c|c|c|c|c}
\text{log} & \text{a. (ro'gU)} & * & * & * \\
\text{b. (ro'g)gU} & * & * & * & * \\
\text{frog} & \text{c. (fU)(ro'g)gU} & * & * & * \\
\text{d. fU(ro'g)U} & * & * & * & *
\end{array}
\]

A second difference between \(\text{CVKl}\)-inputs and \(\text{CCVC}\)-inputs is that the latter receive an epenthetic vowel between the first two consonants (\(\text{frog} \rightarrow \text{furo'ggu} \)). An alternative output (\(\text{fU')(ro'g)U} \) (see (48)) shows retraction of the head foot, and hence the accent, to the antepenult with its epenthetic \(/u/ \). However, this option runs foul of \(\text{HeadDep} \) (46) (after Alderete 1995), also outranking \(\text{NoGem-VorObs} \).

\[
(46) \quad \text{HeadDep}: \text{Segments in a prosodic head in the output have correspondents in the input.}
\]

\(^{14}\) It is conceivable that the effects of \(\text{NonFin-XF}^r \) can be obtained by the combined action of general \(\text{NonFin} \) together with other constraints, but we leave this issue for future exploration.

\[\text{Consonant gemination in Japanese loanwords}\]

The constraint is violated when an epenthetic vowel carries the accent. Word-final codas \(/r, m, n/\) (subject to \(\text{NoGem-SON} \), and \(/s, l/\) (subject to \(\text{NoGem-AntPrc} \)) continue to be singletons in comparable forms (47).

\[
(47) \quad \begin{array}{l|l|l|l|l|l|l|l|l}
\text{NoGem-SON} & \text{ra'mu} & \text{rum} & \text{do'ramu} & \text{drum} & \text{su'ramu} & \text{slam, slam} \\
\text{NoGem-AntPrc} & \text{p'i'ru} & \text{pill} & \text{su'riru} & \text{thrill} & \text{gu'riru} & \text{grill}
\end{array}
\]

\[
(48) \quad \begin{array}{llllll}
\text{FaithCodal}_{\text{JWg}} & \text{NoGem-SON} & \text{NoGem-XF}^r & \text{NoGem-VorObs} & \text{HeadDep} & \text{FaithCodal}_{\text{JWg}} \\
\text{NoGem-SON} & \text{ra'fu} & \text{rough} & \text{gu'rafu} & \text{graph} & \text{ku'rifu} & \text{cliff} \\
\text{NoGem-XF}^r & \text{ba'su} & \text{bus} & \text{pu'rasu} & \text{plus} & \text{bu'rasu} & \text{brass}
\end{array}
\]

These non-geminating cases show that \(\text{HeadDep} \) ranks below the two high-ranking \(\text{NoGem} \) constraints but above \(\text{NoGem-VorObs} \), as in (48).

\[
(48) \quad \begin{array}{llllll}
\text{lamb} & \text{a. (ra'mU)} & * & * & * & * \\
\text{gram} & \text{b. (ra'm)mU} & * & * & * & * \\
\text{plus} & \text{c. (gU'ra)mU} & * & * & * & * \\
\text{frog} & \text{d. gU(ra'm)mU} & * & * & * & * \\
\text{fU(ro'g)gU} & \text{e. gU(ra'm)U} & * & * & * & * \\
\text{fU(ro'g)U} & \text{f. (pU'ra)sU} & * & * & * & * \\
\text{fU(ro'g)U} & \text{g. pU(ra's)sU} & * & * & * & * \\
\text{fU(ro'g)U} & \text{h. pU(ra's)U} & * & * & * & * \\
\text{fU(ro'g)U} & \text{i. (fU'ro)gU} & * & * & * & * \\
\text{fU(ro'g)U} & \text{j. (fU'ro)gU} & * & * & * & * \\
\text{fU(ro'g)U} & \text{k. (fU'ro)gU} & * & * & * & *
\end{array}
\]

Taking \(\text{fu}(\text{ro'g})\text{gu} \) (48i) as an example, it is better to violate \(\text{NoGem-VorObs} \) than to violate \(\text{HeadDep} \), but \(\text{gu'ramu} \) (48c) shows that for \(\text{NoGem-SON} \), the opposite holds.\(^ {16}\)

\(^{15}\) The frequent word \(\text{suta'ffu} \) 'staff, stuff' is an isolated exception.

\(^{16}\) Another candidate which fulfils \(\text{HeadDep} \) is the unaccented \(\text{gu'ramu} \). It loses to \(\text{gu'ra}m\text{U} \) because \(\text{WordAccent} \), which demands an accent, dominates \(\text{HeadDep} \). A different outcome results with an input.
Turning next to complex word-final codas, we find no gemination, neither of the first nor of the second consonant.

\[(49) \quad /\text{lt}\/ \quad \text{ka'ru} \quad \text{cult} \quad /\text{sk}\/ \quad \text{ma'suku} \quad \text{mask} \]

\[/\text{db}/ \quad \text{he'rusu} \quad \text{Hertz (G)} \quad /\text{sp}/ \quad \text{wa'supu} \quad \text{wasp} \]

\[/\text{lp}/ \quad \text{he'rupu} \quad \text{help} \quad /\text{st}/ \quad \text{kya'suto} \quad \text{Cast} \]

\[/\text{lb}/ \quad \text{barubu} \quad \text{bulb} \quad /\text{kl}/ \quad \text{da'kuto} \quad \text{Duct} \]

\[/\text{ki}/ \quad \text{mi'ruku} \quad \text{milkin} \quad /\text{pt}/ \quad \text{a'puto} \quad \text{Apt} \]

Such CVCC inputs have (LL)L output profiles (cvcU)cU, with two epenthetic vowels (after each coda C).\(^{18}\) It is revealing to compare the adaptation of inputs with complex codas such as bulb, with that of inputs with complex onsets such as snob (50d).

\[\text{(50)}\]

\[
\begin{array}{|c|c|c|c|}
\hline
& \text{NoGEM-Son} & \text{NonFIN-XFt} & \text{HeadDep} & \text{NoGEM-YoObs} & \text{FaithCODA/_Wd} & \text{FaithGEM} \\
\hline
\text{bulb} & a. \quad \text{(ba'rU)bU} & \text{*} & \text{*} & \text{*} & \text{*} & \text{*} \\
 & b. \quad \text{ba(rU)'bU} & \text{*} & \text{*} & \text{*} & \text{*} & \text{*} \\
 & c. \quad \text{ba(rU)'bU} & \text{*} & \text{*} & \text{*} & \text{*} & \text{*} \\
\text{snob} & d. \quad \text{sU(no'U)bU} & \text{*} & \text{*} & \text{*} & \text{*} & \text{*} \\
 & e. \quad \text{(sU'U)no'bU} & \text{*} & \text{*} & \text{*} & \text{*} & \text{*} \\
 & f. \quad \text{sU(no'U)bU} & \text{*} & \text{*} & \text{*} & \text{*} & \text{*} \\
\hline
\end{array}
\]

The crucial difference here is the location of the epenthetic vowel, which is avoided as bearer of the antepenultimate mora accent, a HeadDep effect (46). In the complex coda case, the penultimate and the final mora have epenthetic vowels, so the accent can fall on the antepenult without violating HeadDep or NonFin, resulting in (ba'rU)bU (50a). But in the complex onset case, the antepenultimate and the final mora are epenthetic, so a parallel assignment of accent in *(sU'U)no'bU) (50d) violates HeadDep, like skull, which turns into sU(kU')M. Here a constraint barring accent on voiceless vowels prevents *(sU'U)kU'M, and high-ranking NoGem-Son, which dominates NonFin, prefers sU(kU')M to *(sU'U)kU'M. NoGem-ANTFIN also dominates NonFin, resulting in spiff (up) → sU(pf)M, but this ranking seems to be variable, like some of the rankings in our analysis, and sU(pf)M is also found.

Turning next to complex word-final codas, we find no gemination, neither of the first nor of the second consonant.

\[\text{(50a)}\]

\[
\begin{array}{|c|c|c|c|}
\hline
& \text{NoGEM-Son} & \text{NonFIN-XFt} & \text{HeadDep} & \text{NoGEM-YoObs} & \text{FaithCODA/_Wd} \\
\hline
\text{potato} & a. \quad \text{(po'te)to} & \text{*} & \text{*} & \text{*} & \text{*} \\
 & b. \quad \text{(po't)(teto)} & \text{*} & \text{*} & \text{*} & \text{*} \\
 & c. \quad \text{po(te't)to} & \text{*} & \text{*} & \text{*} & \text{*} \\
 & d. \quad \text{po'te'to} & \text{*} & \text{*} & \text{*} & \text{*} \\
\text{duct} & e. \quad \text{(da'kU)tO} & \text{*} & \text{*} & \text{*} & \text{*} \\
 & f. \quad \text{(da'k)(kU)tO} & \text{*} & \text{*} & \text{*} & \text{*} \\
 & g. \quad \text{da(kU')tO} & \text{*} & \text{*} & \text{*} & \text{*} \\
 & h. \quad \text{da(kU't)tO} & \text{*} & \text{*} & \text{*} & \text{*} \\
\text{pocket} & i. \quad \text{(po'k)(ketO)} & \text{*} & \text{*} & \text{*} & \text{*} \\
 & j. \quad \text{(po'k)(ketO)} & \text{*} & \text{*} & \text{*} & \text{*} \\
 & k. \quad \text{(po'ke't)to} & \text{*} & \text{*} & \text{*} & \text{*} \\
 & l. \quad \text{po'ke'tO} & \text{*} & \text{*} & \text{*} & \text{*} \\
\hline
\end{array}
\]

For the input duct, the winning candidate (da'kU)tO (51a) violates FaithCODA/_Wd but its main competitor, da(kU')tO (51g), with a faithfully geminated word-final coda, suffers from a fatal HeadDep violation. The outcome is different when the second and third consonant are separated by an underlying vowel, as in pocket: here the candidate faithfully geminating the word-final consonant, po'ke'to (51i), has an underlying vowel in its accented penultimate syllable, which does not violate HeadDep and avoids a violation of NonFin-XFt.
12.5.3 Prosodic markedness II: InitialFoot

So far, we have only looked at word-final gemination, triggered by both faithfulness (\textsc{FaithCoda/}\textsc{_Wd}) and markedness (\textsc{NonFin-XFr'}). In this section we turn to word-internal gemination, which comes in several varieties. On the one hand, there are cases of gemination which can only be attributed to orthography, being triggered by doubled consonants, such as \textit{h'ttai} 'Hittite', \textit{kappado'kia} 'Cappadocia', or \textit{burryu'seru} 'Brussels'. Orthographic gemination can also affect consonants which otherwise avoid gemination, such as the sonorants in \textit{dʒire'mma} 'dilemma', \textit{kapersi'ni} 'capellini', or \textit{berrti'ni} 'Bellini'.

There are also cases of gemination which are morpheme-final and not word-final, such as \textit{kyappu+resu} 'cap+less', \textit{attatf'i+me'nito} 'attachment', or \textit{kurokkuu+wa'izu} 'clockwise' (Lovins 1975: 93). These can be understood as being due to analogy with their bases, where the consonants in question are in fact word-final, and can be captured by means of Output–Output constraints. What demands our attention here is a third kind of word-internal gemination, which has a definite prosodic base: word-internal gemination can be triggered by another prosodic markedness constraint, \textsc{InitialFoot}. In section 12.2.3 we saw various effects of the \textsc{InitialFoot} constraint (52) in reversing language games, baby talk, and loanword truncations.

\begin{equation}
\text{(52) (=16)} \text{\textsc{InitialFoot (InitFr)}}: \text{A prosodic word begins with a foot.}
\end{equation}

\textsc{InitialFoot} is violated by word-initial LH sequences because the initial L is prosodically trapped and remains unfooted, since the following H is footed on its own as a bimoraic foot \{L[H]...\}. This is the constraint responsible for word-internal gemination in cases such as \textit{kâ'kki}, *\textit{kâ'kki} 'cookie' or \textit{ha'ppi}, *\textit{ha'ppi} 'happy', illustrated first with a simple minimal tableau below.

\begin{equation}
\text{(53)}
\begin{array}{l|c|c}
\text{cookie} & \text{\textsc{InitialFoot}} & \text{\textsc{NoGem}} \\
\hline
\text{a. (ku'k)(kii)} & * & \\
\text{b. ku'(kii)} & *!
\end{array}
\end{equation}

Gemination creates the initially footed (H)(H) structure, while non-gemination leads to an LH output that violates \textsc{InitialFoot}. This is a case of prosodic markedness at work rather than prosodic faithfulness (\textsc{FaithCoda}), since there are no codas in the source words \textit{cookie} and \textit{happy}. Gemination in words with medial intervocalic voiceless obstruents like \textit{cookie} is the majority pattern that needs to be captured by our analysis. As Kawagoe (2015: 114) points out, there is also a minority pattern represented by words like \textit{puppy} \textit{→} \textit{pa'pii}. This variation can be captured by assuming that this group of words is marked for a variant ranking with \textsc{NoGem >> InitialFoot}.

Further confirmation of the effect of \textsc{InitialFoot} can be found in the contrasts between derivationally related words in (54), where the initial trapping effect, and hence gemination, is found only in one case. Gemination in \textit{happy}-type words can in general not be attributed to spelling, since double consonants in orthography often do not geminate (e.g. \textit{happiness}) and orthographic singletons (e.g. \textit{cookie}) do geminate.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|}
\hline
\textbf{} & \textbf{Geminated} & \textbf{Not geminated} \\
\hline
\textit{happy} (ha'p)(pii) & *ha'(pii) & \textit{happiness} (ha'pi)(nesu) * (ha'p)pi(nesu) \\
\textit{happen} (ha'p)(pun) & *ha'(pun) & \textit{happening} (ha'pu)(n'i'ngu) * (hap)pu(n'i'ngu) \\
\textit{listen} (ri's)(sun) & *ri'(sun) & \textit{listener} (ri'su)(naa) * (ri's)su(naa) \\
\hline
\end{tabular}
\end{table}

A tableau for contrasts of this type appears in (55) (we henceforth do not mark epenthetic vowels with capitalization, since they are easily identifiable, and not the focus of discussion).

\begin{equation}
\text{(55)}
\begin{array}{ccc}
\text{Geminated} & \text{Not geminated} & \\
\text{happen} & \text{a. (ha'p)(pun)} & * \\
\text{b. ha'(pun)} & *! \\
\text{happening} & \text{c. (ha'pu)(nin)gu} & *! \\
\text{d. (ha'p)pu(nin)gu} & & *
\end{array}
\end{equation}

The geminated (55d) fulfills \textsc{InitialFoot} with its initial H (ha'p), but so does the ungeminated (55c), where the initial syllable forms a bimoraic foot with the next syllable (ha'pu), and is the winner because it does not have a \textsc{NoGem} violation.

We return here to an observation briefly made in section 12.4.4. The constraint \textsc{NoGem-AntFric/}_{\textsc{Wd}} (35) against geminate /s/ and /ʃi/ only holds strictly in word-final position. Candidate (re'su) (56a) wins because (re's)su (56b), which observes coda faithfulness, violates \textsc{NoGem-AntFric/}_{\textsc{Wd}}. But once removed from the end of the word, /s/ is free to geminate to fulfil \textsc{InitialFoot}, as in (re's) (sun) (56c). A parallel case with /ʃi/ is pa'fu 'puff' vs. ha'ffaa 'buffer'. When the end of the word is not involved and neither word-final coda faithfulness nor the ban against word-final geminate /s,ʃ/ is at play, the gemination patterns are regulated by the prosodic markedness constraint \textsc{InitialFoot}, as shown by the contrast between r't's'sun (56d) and r't'sunaa (56h).
The length of the word by itself is not the responsible factor for gemination, and we find gemination in longer LB-initial words, as in (57).

(57) massage *ma(saa)dii (mas)(saa)dii
passenger *pa(sen)(d3aa) (pas)(sen)(d3aa)
Buckingham *ba(kin)(ganu) (bak)(kin)(ganu)
cf. pessimist *(pej)(m’su)to *(pej)(m’su)to

Consonants obeying the higher-ranked NoGem constraints (NoGem-VoiObs, NoGem-Son) do not geminate in this [L(H)] configuration, as expected (58).

(58) cover ka’baa *ka’bbaa cf. copper ko’ppaa *ko’ppaa
cubby ka’bii *ka’bbii happy ha’ppii *ha’ppii
buggy ba’gii *ba’ggii lucky ra’kii *ra’kii
bazaar ba’zaa *ba’zaa essay e’see *e’see
bunny ba’nnii *ba’nnii kitchen ki’tjin *ki’tjin
berry be’rri *be’rrii fashion fa’jjon *fa’son

What comes as a surprise is the fact that the otherwise very gemination-prone /t, d/ remain single in this intervocalic configuration (59).

(59) kitty ki’tii *ki’ttii cf. kit ki’tto
city fi’tii *fi’ttii
butter ba’taa *ba’ttaa
bitter bi’taa *bi’ttaa

Note, however, that this is exactly the context where /t, d/ are flapped (or tapped) in American (also Australian and New Zealand) English. Flaps are extra short segments, very close to the pronunciation of /t/ in Japanese, which also does not geminate (apart from some emphasized or emotional words such as hirroi 'very big', as Donna Erickson points out, as well as some loanwords from Italian, see earlier in this section). We take the failure of /t, d/ to geminate in (59) to be a faithfulness effect preserving the extra shortness of the consonant in the input. 21

(60) FaithFlap-Length: Flaps in the source word correspond to singletons in the output.

Tableau (61) shows the interaction between FaithFlap and InitialFoot.

(61) city a. fi’(ti) b. (fi’)(ti) *!
body c. bo’(di) *!
d. (bo’)(di) *!

A summary tableau with all constraints discussed so far appears in (62).

(62) bus a. (ba’su) b. (ba’su) *!
essay c. (e’)(see) d. (e’)(see) *!
lucky c. (ra’)(ki) f. (ra’)(ki) *!

21 A reviewer suggests that since word-medial flaps as in 'city' and 'body' are non-geminating in Japanese loanwords, word-final /t, d/ geminate as in [kyatto] 'cat' and [heddo] 'head' so as to avoid being interpreted as flaps (see also discussion in footnote 9).
The derivation \(\text{bus} \rightarrow \text{ba'(gii)} \) (62a) vs. \(\text{essay} \rightarrow \text{(e's)(see)} \) (62c) shows that \(\text{NoGEM-AntFRic} \) prevents prosodic faithfulness from commanding gemination of word-final \(\text{Is/} \), but has nothing to say about the gemination of word-medial \(\text{Is/} \) to fulfil \(\text{INITIALFoot} \). \(\text{lucky} \rightarrow \text{(ra'k)(kii)} \) (62e) shows that \(\text{INITIALFoot} \) dominates the general antigemination constraint \(\text{NoGEM} \), but since it is itself dominated by the more specific \(\text{NoGEM-VoiObs} \) and \(\text{NoGEM-Son} \), we find no gemination, and an initially trapped syllable, in \(\text{buggy} \rightarrow \text{ba'(gii)} \) (62g) and \(\text{bunny} \rightarrow \text{ba'(nii)} \) (62i). In \(\text{city} \rightarrow \text{(i'j)(tii)} \) (62k), \(\text{FaithFlap} \) prevents turning the flapped /t/ of the American English source word into a geminate to fulfil \(\text{INITIALFoot} \), but in \(\text{kit} \rightarrow \text{(ki't)to} \) (62m) prosodic faithfulness demands gemination of the word-final stop to preserve its coda status, violating bottom-ranked \(\text{NoGEM} \).

Even when they fulfil the segmental conditions on geminability, not all initially trapped L syllables become H by gemination, due to other higher-ranking constraints. An example appears in tableau (63).

Here candidate (go)(ji)p\(\text{pu} \) (63d), which fulfils both \(\text{FaithCoda/ }] \text{Wd} \) and \(\text{INITIALFoot} \) by geminating both /p/ and /ji/, loses against go(ji)p\(\text{pu} \) (63a), which does not geminate /j/ and violates \(\text{INITIALFoot} \). This is due to the force of dominant \(\text{OCP-Gem} \), which prohibits geminates in successive syllables (see Tsuchida 1995: 158–9 and Ito and Mester 2003: 47–52 for the motivation for this kind of constraint).

(64) \(\text{OCP-Geminate (OCP-Gem)} \): Geminates in successive syllables are prohibited. Candidates (63b,c) manage to fulfil \(\text{INITIALFoot} \) without violating \(\text{OCP-Gem} \), but are out because they violate \(\text{FaithCoda/ }] \text{Wd} \), which dominates \(\text{INITIALFoot} \). The winner, bu(ra'k)ku (63e), with an initially trapped syllable but with accent on an underlying vowel, is preferred to (bu'ra)ku (63f), which begins with a footed syllable but has the accent on an epenthetic vowel. This is due to the dominance of \(\text{HeadDep} \) over \(\text{INITIALFoot} \). Returning to examples discussed in (51), \(\text{OCP-Gem} \) dominates \(\text{FaithCoda/ }] \text{Wd} \) and is responsible for the selection of (da'ku)to (65a) over (da'k)(kut)to (65d), which has otherwise only two violations of low-ranking \(\text{NoGEM} \). It also dominates \(\text{INITIALFoot} \), which explains why po(ke't)to (65e) is preferred to (pok)(ke't)to (65h).

\[\begin{array}{|c|c|c|c|c|c|}
\hline
\text{word} & \text{g. ba'(gii)} & \text{h. (ba'g)(gii)} & \text{i. ba'(nii)} & \text{j. (ba'n)(nii)} & \text{k. (i'j)(tii)} \\
\hline\hline
\text{buggy} & \text{g. ba'(gii)} & \text{h. (ba'g)(gii)} & \text{i. ba'(nii)} & \text{j. (ba'n)(nii)} & \text{k. (i'j)(tii)} \\
\hline
\text{bunny} & \text{g. ba'(gii)} & \text{h. (ba'g)(gii)} & \text{i. ba'(nii)} & \text{j. (ba'n)(nii)} & \text{k. (i'j)(tii)} \\
\hline
\text{city} & \text{g. ba'(gii)} & \text{h. (ba'g)(gii)} & \text{i. ba'(nii)} & \text{j. (ba'n)(nii)} & \text{k. (i'j)(tii)} \\
\hline
\text{kit} & \text{g. ba'(gii)} & \text{h. (ba'g)(gii)} & \text{i. ba'(nii)} & \text{j. (ba'n)(nii)} & \text{k. (i'j)(tii)} \\
\hline
\end{array}\]

(63)

\begin{align*}
\text{gossip} & \rightarrow \text{a. go(ji)p\(\text{pu} \)} & \text{b. (go'j\text{ji})p\(\text{pu} \)} & \text{c. (go'j'\text{ji})\text{\(\text{pu} \)} } & \text{d. (go'j'\text{ji'})\text{\(\text{pu} \)}} \\
\text{black} & \rightarrow \text{e. bu(ra'k)ku} & \text{f. (bu'ra)ku} \\
\end{align*}

\[\text{Here candidate (go)(ji)p\(\text{pu} \) (63d), which fulfils both FaithCoda/ }] \text{Wd} \) and \(\text{INITIALFoot} \) by geminating both /p/ and /ji/, loses against go(ji)p\(\text{pu} \) (63a), which does not geminate /j/ and violates \(\text{INITIALFoot} \). This is due to the force of dominant \(\text{OCP-Gem} \), which prohibits geminates in successive syllables (see Tsuchida 1995: 158–9 and Ito and Mester 2003: 47–52 for the motivation for this kind of constraint). \]

\[\text{The winner, bu(ra'k)ku (63e), with an initially trapped syllable but with accent on an underlying vowel, is preferred to (bu'ra)ku (63f), which begins with a footed syllable but has the accent on an epenthetic vowel. This is due to the dominance of HeadDep over InitialFoot. Returning to examples discussed in (51), OCP-Gem dominates FaithCoda/ }] \text{Wd} \) and is responsible for the selection of (da'ku)to (65a) over (da'k)(kut)to (65d), which has otherwise only two violations of low-ranking NoGEM.} \]

\[\text{It also dominates InitialFoot, which explains why po(ke't)to (65e) is preferred to (pok)(ke't)to (65h).} \]

\[\text{22 Another serious competitor is } *\text{da'(ku)to, which retracts the accent from the epenthetic vowel (avoiding a HeadDep violation) and also faithfully geminates the word-final coda. It is out because of a constraint against epenthetic vowels in closed syllables, which is never violated in Japanese and dominates FaithCoda/ }] \text{Wd} \).
12.5.4 Prosodic faithfulness II: ProsodicIntegrity

The crucial factor that leads to word-internal gemination involves a light syllable prosodically trapped in word-initial position (INITIALFOOT violation) in the configuration [L(H) ...]. For bisyllabic words, this configuration arises when the initial open syllable has a short vowel, and the second syllable is heavy (with a long vowel/ diphthong, or closed by a nasal consonant).

Because of the strict syllable structure conditions in Japanese—in particular, NoComplex (7) and CodaCond (8)—English H-syllables often become (multiple) L-syllables with epenthesis (cf. the oft-cited disyllabic Christmas becoming the five-syllable kurisu'masu). Less often mentioned in the loanword literature is the reverse situation, where certain (stressless) English L-syllables are adapted as H-syllables in Japanese, namely, (i) stressless word-final /i/ (orthographic -y or -ie), (ii) rhotacized schwa (orthographic -er), and (iii) the syllabic nasal [n], which emerge as i, a, and VN, respectively. We have already seen these cases in (53)–(57) as triggers, namely as H-syllables in second position triggering INITIALFOOT violations. We list some other profiles to show the generality of this mode of adaptation.

Both syllabic /t/ and /n/ are rendered as heavy syllables (hence also as feet), the former by vocalization and the latter by inserting a full nuclear vowel before the coda (moraic) nasal. Other syllabic consonants in English, namely, the lateral /l/ and the labial nasal /m/, have regular epenthesis and become /ru/ and /mu/, as in (67).

Of interest is the fact that these syllabic consonants (occurring with regular epenthesis) appear to be footed together with their onsets in the loanword, as shown in (68b).

This can be interpreted as a preservation of prosodic cohesion: Since these coherent units cannot remain tautosyllabic in Japanese, they at least continue to occupy the same foot: sample [pl] → (sa'm)(uru) p.24 More formally, we are dealing with sequences of rising sonority XY that are maximal (i.e. Y is not followed by a segment of even higher sonority, such as the /i/ in tree). Such sequences play a central role in

23 Stressed versions of rhotacized vowels are also rendered as /a/, such as sa'ab'isu 'service' and pd'asonaru 'personal'.

24 This is an output-oriented way of capturing some of what Kubozono et al. (2009) conceived of as extraprosodicity (e.g. of final /ru/—see section 12.2.3).
syllabification patterns as in Berber (Dell and Elmedlaoui 1985; Prince and Smolensky 1993), and constitute the essence of 'core syllable formation' in previous theories of syllabification (e.g. Steriade 1982). We state the relevant prosodic faithfulness condition in (69).

(69) ProsodicIntegrity: If X and Y form a maximal sequence of rising sonority in the input, they are parsed within the same word-internal prosodic unit (syllable or foot) in the output.

This constraint ensures that syllabic consonants and their onsets are realized as part of a bimoraic foot, either (H) or (LL). Recall that InitialFoot violations arise in the configuration [L(H)], leading to gemination. Given the non-initial foot forced by ProsodicIntegrity, we now also expect the same InitialFoot violation in [L(LL)]. This is exactly what happens, as in (70), giving an overt cue to the correctness of this kind of prosodic parse: there would otherwise be no motivation for gemination in cases like hustle or muscle -*(ha'su')ru and *(ma'su')ru have otherwise perfect prosody, their only flaw seems to be that they pull /s/ and /t/ apart.

Without making the first syllable heavy through gemination, the alternative candidates violate either ProsodicIntegrity or InitialFoot. As shown in tableau (71), the geminated version emerges as the winner, with violations of low-ranking NoGem.

25 Not even orthographic motivation, a very weak factor at best: see (53) and the surrounding discussion.

26 An interesting contrasting pair of a different kind is apple vs. chapel. Presumably under the influence of orthography, the first is interpreted as having a syllabic consonant ([mɪdɔ]'), but the second as having an underlying vowel ([ʧeɪpə]), with non-syllabic /ʧ/. Consequently, we find apple (a'p)(puru) but chapel (ʧeɪpə)ru, where the difference in vowel quality is independent evidence for the difference in interpretation.
The losing non-geminating candidates (73b,f) show that InitialFoot outranks ProsodicIntegrity, and the losing geminated candidates (73d,h) that NoGem-VoiObs and FaithFLap dominate ProsodicIntegrity, respectively.

Finally, we find a gemination contrast involving word-final obstruent coda clusters with /s/ in (73). Whereas sC[w]d (74b) behaves like any other CC coda in final position (see (74d)), we find gemination in sC[w]d (74a) analogous to the final syllabic CC (74c) discussed above.

<table>
<thead>
<tr>
<th>rhythm</th>
<th>EarthFLap</th>
<th>NoGem-Son</th>
<th>NoFIN-XT'</th>
<th>HeadDep</th>
<th>NoGem-VoiObs</th>
<th>FaithCorom</th>
<th>InitialFoot</th>
<th>ProsodicIntegrity</th>
<th>NoGem</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (ri'zu)mu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>b. ri'(zumu)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
</tr>
<tr>
<td>c. ri(zu'mu)</td>
<td>!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. (ri')z(zumu)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>kettle</th>
<th>EarthFLap</th>
<th>NoGem-Son</th>
<th>NoFIN-XT'</th>
<th>HeadDep</th>
<th>NoGem-VoiObs</th>
<th>FaithCorom</th>
<th>InitialFoot</th>
<th>ProsodicIntegrity</th>
<th>NoGem</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (ke'to)ru</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>b. ke'(toru)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>!</td>
</tr>
<tr>
<td>c. ke(wo)'ru</td>
<td>!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. (ke't)(toru)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
</tr>
</tbody>
</table>

The losing non-geminating candidates (73b,f) show that InitialFoot outranks ProsodicIntegrity, and the losing geminated candidates (73d,h) that NoGem-VoiObs and FaithFLap dominate ProsodicIntegrity, respectively.

Finally, we find a gemination contrast involving word-final obstruent coda clusters with /s/ in (73). Whereas sC[w]d (74b) behaves like any other CC coda in final position (see (74d)), we find gemination in sC[w]d (74a) analogous to the final syllabic CC (74c) discussed above.

Most cases here involve orthographic << (fax → fa'kkusu, Max → ma'kkusu, six → s'kkusu, sex → se'kkusu), but the effect here cannot be attributed solely to spelling, since gemination is regularly found only word-finally (cf. tax → ta'kkusu vs. taxi → ta'ku tuo, mix → m'i'kkusu vs. mixer → m'i'kisuu), and is also found in the few cases where the orthography does not have <<, such as dachs → da'kkusu.

What might be the cause of these cases of gemination? The crucial observation here is that a word-final cluster such as /ks/ in dachs (vs. /ks/ in desk) forms a maximal XY cluster of rising sonority, and hence falls under ProsodicIntegrity. The explanation for gemination,

27 As in dachshund, a dog breed.

then, follows along the same lines as in (70) and (71). Tableau (75), with contrasting examples featuring Cs[w]d vs. sC[w]d clusters, illustrates how the analysis proceeds.

(75) | EarthFLap | NoGem-Son | NoFIN-XT' | HeadDep | NoGem-VoiObs | FaithCorom | InitialFoot | ProsodicIntegrity | NoGem |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. sC[w]d dachs [ks]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>b. sC[w]d (da'k)(kususu)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>!</td>
</tr>
<tr>
<td>c. sC[w]d (da'ku)su</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>!</td>
</tr>
<tr>
<td>d. sC[w]d (de'su)ku</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>!</td>
</tr>
<tr>
<td>e. sC[w]d (de's)(suku)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>!</td>
</tr>
<tr>
<td>f. sC[w]d (pi'ru)su</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>!</td>
</tr>
<tr>
<td>g. sC[w]d (pi'r)(rusu)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>!</td>
</tr>
<tr>
<td>h. sC[w]d (ma's)(suru)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>!</td>
</tr>
<tr>
<td>i. sC[w]d (ma'su)ru</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>!</td>
</tr>
</tbody>
</table>

Comparing the relevant forms of the ks[w]d- and sk[w]d- endings, we see a ProsodicIntegrity violation in *(da'ku)su (75b) and an InitialFoot violation in *da'(kusu) (75c), hence geminating (da'k)(kususu) (75a) emerges as the winner. The output (de'su)ku (75d), however, violates neither ProsodicIntegrity nor NoGem. For ks[w]d- and sl[w]d-endings, the winner (pi'r)(rusu) (75f) violates ProsodicIntegrity applying to Cs[w]d but is still optimal because the geminating (pi'r)(rusu) (75g) violates higher-ranking NoGem-Son. On the other hand, the geminating winner (ma's)(suru) (75h) preserves ProsodicIntegrity and violates only bottom-ranked NoGem.

12.6 Summary and conclusion

As a summary of the analysis, we first assemble all constraints that play a role and their ranking. In (76), we reproduce the overall constraint-ranking diagram produced by OTWorkplace (OTW), a software suite developed by Alan Prince, Bruce Tesar, and Naz Merchant that, in the words of its authors, 'uses Excel as a platform for interactive research with the analytical tools of modern rigorous OT'.

OTWorkplace, version 0.8.1, is open-source and distributed without charge, downloadable from https://sites.google.com/site/otworkplace/
ovals, and markedness constraints by rectangles. Among the markedness constraints, the special group of segmental anti-gemination constraints have solid borders, whereas the others—all prosodic well-formedness constraints—have broken borders.

(76)

The core data that support these rankings and the analysis, as summarized by OTW in its skeletal basis, appear in (77), adapted to the notations of this chapter. The essence of OT's ranking logic is that in each winner-loser pair for a specific input, each constraint favouring the loser must be dominated by some constraint favouring the winner. Being a winner in OT means beating every competitor on the highest-ranking constraint that distinguishes the two. This is most clearly brought out in the comparative tableau format (Prince 2000). In each row representing one such competition, W in a constraint column means that the constraint in question favours the winner, 'L' that it favours the loser, and no mark that it favours neither. Thus in the first row, 'W' in the headdep column means that the constraint headdep demanding prosodic words to start out with a bimoraic foot, not with an unfooted

unaccented winner (gu'ra)su. The fact that (gu'ra)su is preferred to unaccented (gura)su supports the ranking wordacc >> headdep. Another interaction briefly discussed earlier is the preference of sy(kd'ru) 'skull' over (s7t'ka)ru, which supports the dominance of the constraint militating against accent on a voiceless vowel over the nonfinality constraint.29 'Syllstruct' is a cover constraint combining the three constraints nocomplex (7), codacond (8), and nosuperheavy (10).

In conclusion, we would like to highlight three central results of this study. First, as already argued by Kubozono et al. (2009), prosodic markedness plays an essential role in the explanation of the gemination and non-gemination patterns in Japanese loanwords. Significant higher-level prosodic factors that are part of the native system are at work and result in gemination. An example is initialfoot, a constraint demanding prosodic words to start out with a bimoraic foot, not with an unfooted

29 Alternatively, one could interpret the 'accent shift' visible here as a switch to iambic foot structure, or even as a strictly phonetic phenomenon.
syllable (see Ito and Mester 1992). This is seen in contrasts such as (r̃′s)(sun) 'listen' (not *r̃′(sun)) vs (r̃′su)(nna) 'listener' (not *(r̃′su)n(naa)).

Secondly, prosodic faithfulness to the source word also plays a central role. Gemination is a way of preserving word-final codahood in the English source words of consonants geminable in Japanese. The necessity of coda faithfulness in addition to prosodic markedness is clear from examples like the following. The English word market exists in two variants, the first with rule-based antepenult mora accent: (maa)(ke′t)to, the second with faithful accent on the first syllable: (ma′a)(ket)to. The gemination of /t/ in the first variant could be explained by NONFINALITY[XFR ′], which would be violated in (maa)(ke′to), with an accented foot in final position. But NONFINALITY[XFR ′] does not explain gemination in (ma′a)(ket)to, which must be due to faithfulness to the coda status of /t/ in English market. There are many such doublets: kayakkukayakkukayak’, kechappu-kechappuketchup’, goshippugoshippugossip’, poketto-poketto’pocket’, etc.

Thirdly, there is no single constraint against geminate consonants, but rather a whole family of such constraints, ranked at different points within the constraint hierarchy of Japanese grammar (see (76)). Their interleaving with faithfulness constraints and other markedness constraints explains the details of the gemination patterns and crucially requires a system of priority-ranked constraints.

Acknowledgements

The work reported in this chapter was supported by the NINJAL collaborative research project ‘Phonological characteristics of the Japanese lexicon’ and by UC Santa Cruz Faculty Research grants. We are grateful for helpful comments from two anonymous reviewers, and would especially like to thank Stuart Davis for his perceptive and careful advice.
The Phonetics and Phonology of Geminate Consonants

Edited by
HARUO KUBOZONO

OXFORD UNIVERSITY PRESS
References

References

References

Churchyard, Henry (1988). Some problems of reduplication and vowel harmonic spreading in Trukese. MS, University of Texas.

References

References

References

Giriko, Mikio (2008). Heibangaka akusento seiki jōken ni taisuru reigai goi ni tsuite no kōsetsu [Remarks on the exceptions to the deaccenting rule in loanwords]. Handout of talk given at the regular meeting of the Phonological Association in Kaisai (Kobe University, July 5).

References

References

Steriade, Donca (2007). Perceptual repair and syllable structure: a reply to Kabak and Išsardi. MS, MIT.

References

