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Abstract Analysis of paleocommunity data poses a challenge because of its  
multivariate nature, containing counts of many species in many samples. Comparison 
of the abundance of a single species among all samples provides only incom-
plete information, whereas attempting to consider every species is impractical. 
Ordination methods are analytical techniques that reduce the original multivariate 
dataset to a few important components by creating new synthetic variables designed 
to explain the maximum amount of original data variability. The ultimate goal is to 
order the samples along ecologically or environmentally meaningful gradients 
in order to interpret differences in community structure. This chapter describes 
three of the most widely-used ordination methods, principal components analysis 
(PCA), detrended correspondence analysis (DCA), and non-metric multidimensional 
scaling (NMDS), explaining the methodology of each and outlining their strengths 
and weaknesses for analysis of paleoecological data. The techniques are illustrated 
using Ediacaran paleocommunity data from Mistaken Point, Newfoundland. PCA 
relies on assumptions that are inappropriate for ecological data, such as the requirement 
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that species abundances change in a linear fashion along the environmental 
gradient, and is not well suited for community ordination. In contrast, DCA and 
NMDS both perform well with ecological data; DCA incorporates a more ecolog-
ically-realistic measure of distance between samples but some of the detrending 
methods have been criticized, whereas NMDS only assumes a monotonic relation-
ship between compositional similarity and gradient distance. The two methods also 
have complementary strengths, with DCA typically better at extracting the primary 
gradient and NMDS better at resolving the overall pattern.

Keywords 

1.1  Introduction

Ecologists and paleoecologists are commonly faced with large datasets containing 
many variables from many samples (multivariate data), with the ultimate goal of 
revealing and interpreting ecologically significant patterns in those data. In paleoecol-
ogy these datasets often take the form of an occurrence matrix of presence/absence 
or relative-abundance counts of perhaps 10 to >100 taxa (variables) from as many as 
10–100s of collection sites. Analysis of between-sample similarities in a single 
variable (e.g., the abundance of a single taxon) is inadequate at capturing the full 
range of variability in the original dataset. However, the original dataset also contains 
a great deal of redundant information as, for example, several taxa can respond in a 
similar fashion to the same environmental gradient (Palmer 1993). Thus, it is almost 
always desirable to reduce the number of variables, typically to the two or three most 
important components, allowing the data to be displayed and interpreted more easily 
than by examining the dozens of variables in the original data.

A wide range of different analytical methods have been devised for reducing 
 complex multivariate datasets so that they can be displayed in two or three dimensions 
(James and McCulloch 1990; Shi 1993). They are collectively called ordination tech-
niques and in ecology and paleoecology they typically are used for gradient analysis – 
identifying environmental gradients and placing species in their correct position along 
those gradients (Bray and Curtis 1957). Environmental gradients, such as depth (more 
precisely, depth-related variables such as energy and substrate) in marine communities, 
exert a fundamental control on the spatial distribution of species and, as a result, are the 
primary influence on community composition (Cisne and Rabe 1978; Holland 
et al. 2001; Holland 2005). Other important gradients may include biogeographic varia-
tion, other environmental changes such as salinity (in estuarine environments, for 
example), temporal changes in community structure due to origination/immigration and 
extinction/emigration, or ecological succession as argued by Clapham et al. (2003).

This chapter will focus on three techniques for reconstructing environmental 
gradients and analyzing community structure: (1) Principal Components Analy-
sis (PCA), (2) Correspondence Analysis (CA) and its relative Detrended 
Correspondence Analysis (DCA), and (3) Non-Metric Multidimensional 
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Scaling (NMDS). Other methods (Polar Ordination and Principal Coordinates 
Analysis) will be discussed briefly but are less commonly applied by paleo-
ecologists. These are all indirect gradient analysis methods, as they use the 
distribution of species among the sites to infer the original environmental gra-
dients that structured those sites (Minchin 1987; Palmer 1993). In contrast, 
direct gradient analysis techniques (e.g., Canonical Correspondence Analysis) 
explicitly relate species composition to measured environmental parameters 
(Palmer 1993), but are less applicable to paleontological data where environ-
mental parameters typically are not directly measured or even estimated. The 
key differences between these three indirect gradient analysis methods are the 
mechanisms by which they quantify sample dissimilarity and the assumptions 
inherent in relating dissimilarity to separation along the environmental gradient 
(Faith et al. 1987). The implications of those differences will be discussed in 
greater detail below, with the ultimate goal of answering the question: which 
ordination method should you use to analyze your data?

1.2  Dataset Summary

This chapter will use a dataset of relative abundances from Ediacaran communities 
at Mistaken Point (Table 1.1), previously used by Clapham et al. (2003), to explore 
the procedures, assumptions, and application of different multivariate techniques 
(see Chap. 3 for a more detailed description of the fossil sites). The occurrence 
matrix contains abundance counts of 16 taxa from nine fossiliferous bedding 
planes, including three outcrops of the well-known “E” surface. All abundances 

Table 1.1 Occurrence matrix showing abundance of 16 taxa in nine Mistaken Point samples

Sample/Taxon PC BC LMP D Ey Eq Ewc G SH

Aspidella 0 0 0 1 3 0 1 0 1
Bradgatia 0 1 0 76 226 15 14 55 10
Charnia 18 0 152 20 84 5 14 4 1
“Charnia” B 0 26 58 0 0 0 0 0 0
Charniodiscus 0 0 13 0 1,398 52 35 49 3
“Dusters” 0 0 4 8 612 28 35 5 0
Fractofusus “Spindle” 0 76 4 1,169 1,497 71 100 0 0
Hiemalora 0 0 1 0 21 1 0 0 0
“Holdfast Frond” 0 0 0 0 0 0 0 22 0
Ivesheadia (“Ivesia”) 79 1 1 7 77 5 3 8 27
“Lobate Disc” 0 0 0 0 142 3 10 0 0
Hapsidophyllas “Network” 0 0 0 1 1 0 2 0 0
“Ostrich Feather” 0 0 62 0 0 0 0 0 0
Pectinifrons “Pectinate” 0 0 0 175 0 0 0 0 304
“Spoon Frond” 0 0 0 0 1 1 1 0 0
Thectardis “Triangle” 140 0 0 0 25 3 7 0 0
Total 237 104 295 1,457 4,087 184 222 143 346
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were standardized to percent abundance by normalizing by the total number of 
specimens per sample, as many of the analyses are sensitive to variations in abso-
lute abundance among sites that reflect sampling intensity rather than an actual 
ecological parameter. Most taxa are identified to genus level but several are poly-
phyletic form taxa: the “dusters” category likely encompasses two or more undescribed 
genera, while Charnia counts also include the recently-described genus Beothukis, 
which was not differentiated in the original data collection of Clapham et al. (2003). 
All of the ordination techniques will be performed on the same occurrence matrix to 
facilitate understanding of their methodology and enable comparison of their results. 
Most analyses shown here were performed with the free software package PAST 
(Hammer et al. 2001) but can be done with a variety of statistical programs.

1.3  Data Standardization

The first important choice to be made, even before deciding on the appropriate 
ordination technique, is whether to analyze the raw abundance counts or whether to 
standardize them. All of the analyses in this chapter will be performed after converting 
each raw abundance value to percent abundance, normalizing the data to eliminate 
the influence of variations in total sample size. Otherwise, it is possible that two 
samples may be erroneously grouped together because rare species in the large 
sample have a similar raw abundance to common species in the small collection. 
This standardization was chosen because sample size in the Mistaken Point dataset 
is a reflection of sampling intensity, rather than having ecological significance. This is 
the case in many, but not all, paleoecological datasets, and investigators will need to 
consider whether variations in total abundance have biological significance (in which 
case they should not convert the data to proportions) or reflect sampling intensity.

It is also possible to normalize species to their maximum abundance so that the 
species relative abundances all sum to a value of 1 (or 100%), or to perform a double 
standardization by both site and species totals (Faith et al. 1987). Standardization by 
species total abundance strongly weights rare species and reduces the influence of abun-
dant taxa, which may not be appropriate unless the species occur at similar abundance 
or different trophic levels are present and the investigator wishes to account for the rarity 
of carnivores relative to primary producers, for example Jongman et al. (1995).

1.4  Ordination Methods

1.4.1  Principal Components Analysis (PCA)

Principal Components Analysis is one of the oldest techniques used in multivariate 
data ordination and was the first to be applied to ecological data (Goodall 1954). 
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It still enjoys some use in paleoecology (e.g., Rodriguez 2004; Botquelen et al. 
2006; McKinney and Hageman 2006) despite having several attributes that are not 
ideally suited to certain types of ecological data (Gauch and Whittaker 1972; Fasham 
1977; Minchin 1987). The most severe issue, discussed in more detail below, is the 
distortion induced by fitting a linear (Euclidean) distance model to non-linear eco-
logical gradients (Gauch and Whittaker 1972; Minchin 1987). As a result, PCA 
should not be used for analysis of ecological (species count) data. It is instructive, 
however, to examine the analytical procedure used in PCA because it illustrates the 
general principles of ordination, in particular eigenanalysis-based multivariate 
ordination. PCA, like all ordination, seeks to summarize the original multivariate 
dataset, which can often contain dozens of species at multiple sites, in a smaller 
number of new, synthetic variables – the “principal components” in the method’s 
name (James and McCulloch 1990). It is based on linear algebra, using a technique 
called eigenanalysis to rigidly rotate the original data matrix (i.e., changing the 
coordinate system without altering the relative position of the points) so that the new 
principal component axes account for the maximum amount of variability in the 
original data (Quinn and Keough 2002). The underlying mathematical basis is com-
plex but the basics of PCA and other eigenanalysis methods can be explained 
graphically by considering a simplified example with only two variables (Fig. 1.1).

In this simple example, analysis of ecological data begins with a bivariate plot 
in which the axes are the abundance of species 1 and species 2, and the data points 
represent each sample in the study (Fig. 1.1a). The data are then “centered” by 
subtracting the mean species abundance from the abundance in each sample; this 
has the effect of moving the points so that the graph axes run through the mean of 
each species (Fig. 1.1b). The final step rotates the axes so that one axis, principal 
component 1, is aligned with the maximum variance of the sampled points 
(Fig. 1.1c). In fact, the new axes are simply obtained by a linear regression through 
the data points. Principal component 2 is created in a similar fashion and accounts 
for the maximum amount of remaining variance with the constraint that it is 
perpendicular to axis 1. This procedure can easily be conceptually generalized to 

Species 1

Abundance of species
1, 2 in sample n 

Mean abundance
of species 1, 2

a b c

Principal
Component 1

Principal
Component 2

S
pe

ci
es

 2

Original Data Centered Data Rotated Axes

Fig. 1.1 Simplified two-variable example conceptually illustrating the process involved in PCA. 
(a) The abundance of each species is plotted on a bivariate (or multivariate) plot. (b) Data points 
are centered so that the axes pass through the mean point of each species. (c) Axes are rotated to 
align with the direction of maximum variability in the original data
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multivariate datasets: principal component 1 is the direction of maximum variance 
in the multidimensional cloud of points and additional axes are generated to explain 
the maximum remaining variance while remaining perpendicular to all other axes.

In practice, PCA solutions are not derived graphically but are instead calculated 
using a linear algebra technique involving spectral decomposition of an association 
matrix to extract the eigenvectors and eigenvalues (these two terms will be 
explained below). The association matrix defines the interrelationships between the 
samples based on the covariance or correlation between variables (covariance and 
correlation are mathematical metrics of the degree to which changes in two vari-
ables are associated) (Quinn and Keough 2002). It is important to note that PCA 
with the covariance matrix will often give significantly different results from 
PCA with a correlation matrix; however, because PCA is not appropriate for 
ecological data analysis, the details are not important for this chapter. In brief, the 
correlation matrix is calculated from standardized data, removing the effects of 
differences in the variances of the original variables (Quinn and Keough 2002). 
As such, it is useful for analyzing variables measured in different units or with dif-
ferent scales, whereas the covariance matrix (sensitive to differences in variance) is 
more appropriate when differences in the variances have biological significance.

Regardless of the choice of association matrix, PCA will produce a final plot with 
several principal component axes (“eigenvectors”) each explaining a certain amount 
of the variance present in the initial data (quantified by the axis “eigenvalue”). 
Because the principal component axes are linear regressions through the data cloud, 
each axis can be defined by a linear combination of the analyzed variables. For 
example,

1 1 2 2PC1 c X c X c X= + +¼+ n n

The coefficients c
n
 are termed “loadings” and quantify the importance of each 

variable in influencing the sample’s position along the principal component axis. In 
the case of community analysis, they indicate the degree to which a sample’s posi-
tion is influenced by the abundance of each species (X

n
). When the loading of a 

species on a particular principal component is high, variations in its abundance are 
a strong control on the distribution of samples along that axis.

Two PCA ordinations of Mistaken Point assemblages, one using a covariance 
matrix and one using a correlation matrix, are shown in Fig. 1.2 with the eigenval-
ues (given the Greek letter l) displayed by each principal component axis and the 
loadings of each species displayed as lines radiating from the origin. The graphs are 
presented solely to demonstrate the interpretation of ordination plots, even though 
it is likely that neither result accurately reflects the underlying ecological structure 
of Mistaken Point communities due to the inappropriate linear assumption inherent 
to PCA. The units on each axis depend on the scale of original measurements and 
are not of importance for data interpretation. Note that the amount of variance 
explained by each principal component is low (no more than 40%) – a result that is 
typical of ecological data ordination. Explained variance decreases with successive 
principal components so only the first two, or sometimes three, axes are typically 

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189



1 Ordination Methods and the Evaluation of Ediacaran Communities 

interpreted in ecological studies, although it is possible that lower order axes may 
also contain important information. In the covariance analysis (Fig. 1.2a), Fractofusus 
(“spindles”) and Pectinifrons (“pectinates”) have high loadings (indicated by longer 
lines radiating from the origin) on axes 1 and 2, primarily because they account for 
57% of the variance in the original data. This indicates that variations in their 
abundance are the primary controls on the position of samples along those axes – 
for example, principal component 1 is essentially the abundance of Fractofusus, 
from high abundance at negative PC1 scores to low abundance at positive PC1 
scores. Variations in the abundance of rare species (Aspidella, lobate discs, 
Hapsidophyllas (“networks”), “holdfast fronds”, etc.) make essentially no contribu-
tion to the structure of the ordination plot. In contrast, all species contribute equally 
to the correlation PCA due to the effects of variable standardization (small varia-
tions in the length of the loadings are an artifact of displaying only two axes of a 
multidimensional diagram), which gives as much weight to the abundant Fractofusus 
as it does to Hiemalora, only present on three surfaces and never accounting for 
more than 0.5% of the community.

As mentioned above, it is likely that neither PCA ordination accurately repre-
sents the actual ecological structure of Mistaken Point communities. That error 
arises because PCA requires the assumption of an underlying linear relationship 
between variables (Euclidean distance) – a severe problem that results in a distorted 
representation of the original ecological gradient when applied to community data 
(Gauch and Whittaker 1972; Minchin 1987). Many studies have documented 
curved unimodal variations in taxon abundance along ecological gradients (depth, 
altitude, etc.) and a non-linear relationship between compositional similarity and 
distance between samples along the gradient, with the rate of decrease in similarity 
reduced at greater distances (Minchin 1987). Because PCA attempts to fit this non-
linear relationship to an underlying assumption of linearity, the resulting PCA 
ordination is distorted and likely does not reflect the actual ecological gradients. 
One common distortion is the characteristic “horseshoe” shape, in which the ends 
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line indicating the degree of loading on each axis. (b) Ordination using the correlation matrix
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of the gradient curve inwards are depicted as having greater similarity than is 
actually the case. This contrasts to other ordination techniques that are not based on 
the assumption of a linear relationship, such as detrended correspondence analysis 
(discussed in more detail below), which do not exhibit the horseshoe effect. The 
effect is less pronounced when beta diversity (between-sample species difference) 
is low, but when multiple gradients are present in the original sample space the 
distortion is severe and undetectable, and the results cannot be interpreted (Fasham 
1977; Minchin 1987). As a result, PCA should not be used for ordination of eco-
logical data.

1.4.2  Correspondence and Detrended Correspondence  
Analysis (CA/DCA)

The recognition of faults in PCA methodology when applied to community data 
(e.g., Gauch and Whittaker 1972) led to the development of new techniques for 
ecological ordination. Correspondence analysis, the underlying mechanism for DCA, 
is an eigenanalysis technique similar to principal components analysis (CA can 
also be calculated through an iterative process called reciprocal averaging) (Hill 
and Gauch 1980). Whereas PCA conceptually seeks to rotate axes through the 
multidimensional cloud of sample points to maximize the variance explained, CA 
can be thought of as rotating the axes simultaneously through both species and 
sample points to maximize the correspondence between the two. In matrix algebra 
terminology, this simultaneous axis rotation means that eigenvectors for species 
and samples are extracted jointly and allows samples and species to be plotted 
directly on the same axis instead of separately determining loadings of species onto 
sample axes. Correspondence analysis performs the same matrix decomposition 
techniques as PCA but on the original data after data transformation to yield 
chi-square distances rather than on an association matrix of correlation or covari-
ance between sites (Chardy et al. 1976; Faith et al. 1987). As a result, many features 
of the output of CA are analogous to those in PCA, only differing due to the use of 
chi-square distance rather than Euclidean distance (Kenkel and Orloci 1986; 
Faith et al. 1987). The sum of CA eigenvalues measures the lack of independence 
between species and samples in the original data set (the overall chi-squared statistic 
divided by total frequency – called “inertia”); in PCA they measure the total vari-
ance in the original data set. As in PCA, successive axes account for progressively 
less inertia, with the first axis explaining a relatively high proportion of the lack of 
independence between species and samples.

This chi-square transformation of the original data matrix is a key aspect of CA 
and is one reason why it is more suitable for ordination of ecological data (Faith 
et al. 1987). Chi-square distance does not assume a linear relationship between 
sample dissimilarity and ecological distance, an assumption inherent in PCA that is 
rarely met by ecological data (Faith et al. 1987; Minchin 1987). As a result, CA 
correctly ordinates samples from the ends of the environmental gradient along the 
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primary axis, avoiding the “horseshoe effect” common in PCA. The chi-square 
distance has other limitations, however, and is not robust to variations in the under-
lying structure of the ecological gradient when taxon abundances deviate from a 
unimodal normal distribution (Faith et al. 1987), a relatively common feature in 
natural ecosystems (Oksanen and Minchin 2002). It tends to overweight species 
with low abundance, exaggerating the distance of samples containing more rare 
taxa (Minchin 1987), although different software packages contain options for 
downweighting their importance (Hill and Gauch 1980; Holland et al. 2001; 
Scarponi and Kowalewski 2004). Chi-square distance also does not reach a constant 
maximum when samples with no compositional overlap are compared, instead 
varying depending on the relative occurrence of common and rare species in those 
samples (Minchin 1987).

Despite the limitations of the chi-square distance, correspondence analysis often 
performs well at reconstructing the primary ecological gradient (Gauch et al. 1981; 
Olszewski and West 1997), although there are two potential artifacts of the CA 
process that may hamper interpretation. First, samples are often compressed at 
either end of the gradient relative to the middle (Hill and Gauch 1980) because 
taxon breadths along the gradient are artificially truncated and narrowed at the edge 
of the study area (Peet et al. 1988). Second, and more significantly, CA does not 
produce additional axes that are independent of prior axes (although they must not 
be linearly correlated, they can have a non-linear relationship) and the second axis 
often appears as a quadratic function of the first (due to projection of a multidimen-
sional dataset into two dimensions) – termed the “arch effect” (Hill and Gauch 
1980). Two separate techniques have been devised to correct for these artifacts in 
CA: detrending to eliminate the arch effect on higher-order axes, and rescaling to 
reduce compression at the ends of axes. The resulting ordination is called detrended 
correspondence analysis (DCA) (Hill and Gauch 1980).

Detrending uses a running window to divide the primary axis into segments; all 
points within a segment are centered by subtracting the mean axis 2 score in that 
segment from each axis 2 value (Fig. 1.3) (Hill and Gauch 1980). This technique 

Axis 1 Axis 1

Before detrending After detrending

A
xi

s 
2

A
xi

s 
2

a b

Fig. 1.3 Example illustrating the detrending procedure used in DCA. (a) Axis 1 is divided into 
segments (dashed lines) and the original points in each section (open circles) are centered by 
subtracting the mean axis 2 value for that segment (dotted line). (b) The resulting detrended points 
are shown by filled circles. The actual detrending procedure is more complicated because it uses 
overlapping running segments and is performed in conjunction with rescaling (Modified from Hill 
and Gauch (1980))
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removes any arch effect (by distorting the ordination plot), regardless of whether 
the arch is an artifact or a real feature of the ecological structure (Kenkel and Orloci 
1986; Minchin 1987; Wartenberg et al. 1987; Olszewski and West 1997). Detrending 
can also be sensitive to the number of segments in some cases (Jackson and Somers 
1991), although the default value (26 segments) often improves the ordination (Peet 
et al. 1988; Knox 1989).

DCA also uses a mathematical rescaling process to remove the effects of gra-
dient compression near the ends of axes, assumed to be an artifact (Hill and 
Gauch 1980). It requires that the abundances of all taxa are normally distributed 
along the gradient with equal variances (i.e., that species composition changes at 
the same rate along the gradient) and adjusts the position of species along the 
axis to maintain a constant within-sample variance of species scores at each point 
(Hill and Gauch 1980; Peet et al. 1988). This has the benefit of rescaling the axis 
so that distance can be directly interpreted in terms of compositional change 
(Peet et al. 1988) but has been criticized because of its potentially unjustified 
assumption of constant rates of taxon turnover (Wartenberg et al. 1987). Species 
abundances along a gradient are not always Gaussian (Oksanen and Minchin 
2002) and different species response curves may have different variances 
(Holland 2005).

The choice of whether or not to detrend the data has been intensely debated 
(Minchin 1987; Wartenberg et al. 1987; Peet et al. 1988; Knox 1989) and CA 
(Cisne and Rabe 1978; Olszewski and West 1997) and DCA (Holland et al. 2001; 
Scarponi and Kowalewski 2004; Holland 2005; Zuschin et al. 2007; Clapham and 
James 2008) have both been used in paleoecological data analysis. Despite the 
arbitrary and perhaps unfounded assumptions inherent to DCA (Wartenberg et al. 
1987), the detrending and rescaling process may yield more accurate and inter-
pretable ordination results, especially of long ecological gradients (Peet et al. 
1988; Knox 1989) or in the case of rapid ecological turnover (Kenkel and Orloci 
1986), although in other cases they produce distortions in the underlying gradient 
(Kenkel and Orloci 1986; Minchin 1987). In particular, DCA ordination is often 
twisted so that residual variation is actually spread over axes 2 and 3, resulting in 
the characteristic wedge shape, where variation on axis 2 is maximal near the 
mid-point of axis 1, seen in many DCA plots (e.g., Scarponi and Kowalewski 
2004; Tomasovych and Siblik 2007; Zuschin et al. 2007; Clapham and James 
2008). In analyses of simulated data, CA and DCA typically produce accurate 
ordinations of the primary axis (Gauch et al. 1981) but the structure along axes 2 
and 3 may be distorted, regardless of the effects of detrending and rescaling. In 
Mistaken Point data, the detrending/rescaling procedure modifies the spacing 
between points, increasing the distance between E, G, and BC samples while 
bringing SH and PC samples closer to the main cluster, but does not greatly alter 
the relative position of the samples (Fig. 1.4). The main difference is in the posi-
tion of the PC sample, which is likely difficult to ordinate due to its low species 
count (only three taxa). Overall, CA and DCA both appear to result in a reason-
able ordination of Mistaken Point surfaces.
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1.4.3  Non-Metric Multidimensional Scaling (NMDS)

Eigenanalysis ordination methods such as PCA or DCA are metric techniques that 
stipulate a proportional relationship between compositional change and distance 
along the gradient (Kenkel and Orloci 1986; Minchin 1987). As discussed above, 
ordination results may be distorted when the actual relationship deviates from the 
idealized assumptions. Another family of techniques compares between-sample 
similarity using quantitative distance metrics (discussed below) rather than taking 
an eigenanalysis approach. This section will focus primarily on non-metric multi-
dimensional scaling, the most widespread of these techniques, but it is useful to 
briefly mention two other distance-based ordination methods: polar ordination and 
principal coordinates analysis (PCoA).

Polar ordination (also called Bray-Curtis ordination) is so named because it projects 
all samples onto an axis using their relationship to two selected reference points 
(“poles”), as calculated by the chosen distance metric (Bray and Curtis 1957; Cisne 
and Rabe 1978; Beals 1984). In the original formulation of Bray and Curtis (1957), 
the two data points with the maximum separation were chosen as the reference points; 
later workers proposed a variety of methods for selecting reference points (Beals 
1984). Higher-order axes can be constructed from a matrix of residual distances (i.e., 
the remaining distance not accounted for by the first axis), producing axes that are 
perpendicular and uncorrelated to the primary axis (Beals 1984). The comparison of 
all samples to only two reference points, rather than analyzing all intersample differ-
ences, may seem like a limiting constraint but polar ordination appears to perform 
well at ecological ordination (Gauch and Whittaker 1972; Beals 1984).

Principal Coordinates Analysis (PCoA) attempts to maximize the linear correla-
tion between actual intersample distances (using a user-chosen distance metric) and 
those distances projected onto a two- or three-dimensional space (Gower 1966). 
It is sometimes called “metric multidimensional scaling” because it is similar to 
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non-metric multidimensional scaling but uses a parametric (or “metric”) linear 
correlation. Although PCoA is able to use an ecologically-appropriate distance 
metric, the linear correlation imparts similar distortion to that seen in PCA (Podani 
and Miklós 2002) and PCoA generally performs poorly at ordinating ecological 
data (Minchin 1987).

Non-metric multidimensional scaling differs markedly from those metric approaches 
by assuming only that the relationship between distance and sample dissimilarity is 
monotonic (i.e., increasing rank-order distance corresponds to increased rank-order 
dissimilarity) rather than proportional (Kruskal 1964; Fasham 1977; Kenkel and 
Orloci 1986; Clarke 1993). In this manner, rank-order NMDS is analogous to non-
parametric classical statistics. NMDS uses this rank-order agreement between the 
calculated solution and the original dataset, a value called “stress,” to assess the quality 
of ordination results. Analysis begins with a random configuration of points (or a user-
specified configuration, such as the results of another ordination method) and performs 
an iterative optimization procedure to refine the solution until the stress reaches a mini-
mum (Clarke 1993). The algorithm may reach a local stress minimum rather than 
identifying the globally best solution (Fasham 1977; Kenkel and Orloci 1986; Minchin 
1987; Clarke 1993), but this is rare when the starting configuration is random and can 
generally be overcome by selecting several random starting points and comparing the 
final stress to confirm that the optimal solution has been reached (Clarke 1993).  
The lowest stress indicates the best rank-order agreement between calculated solution 
and original matrix, with a stress of zero indicating perfect rank-order agreement and 
stress values less than 0.1 corresponding to a good representation that can reliably be 
interpreted (Clarke 1993). Higher stress values can still be interpreted, but with greater 
caution, although stresses greater than 0.2 indicate a poor to nearly random ordering 
of points (Clarke 1993).

Another fundamental difference of NMDS is the ability to select from a variety 
of similarity or distance coefficients, whereas PCA is based on Euclidean distance 
and DCA is constrained to use chi-square distance to calculate sample dissimilarity 
(Faith et al. 1987). This is a significant benefit because Euclidean (and perhaps also 
chi-square) distance often perform poorly with ecological data (Faith et al. 1987). 
A myriad of similarity or distance metrics have been proposed, each with benefits 
and drawbacks for specific data types (Faith et al. 1987; Shi 1993). Studies with 
various simulated ecological gradients have suggested that the Bray-Curtis, 
Kulczynski, and Relativized Manhattan (i.e., each species standardized to percent 
abundance within a sample and normalized to its maximum abundance in any 
sample) coefficients produce the closest rank-order and linear correlation between 
compositional dissimilarity and ecological distance along the gradient under most 
conditions (Faith et al. 1987). Although some coefficients perform better than 
others with simulated ecological data, there is no objective guide to choosing a 
distance metric (see Faith et al. (1987) for a detailed review of several distance 
measures). The Bray-Curtis coefficient was designed for interpretation of ecological 
data (Bray and Curtis 1957) and performs well on simulated datasets (Faith et al. 
1987). Because it enjoys widespread use and is intuitive – simply calculate the 
absolute value of the difference in abundance of a species (X

i
−X

j
) between two 
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samples divided by the total abundance of that species in the two samples (X
i
+X

j
), 

and sum the results for all species – it is a good choice for use in NMDS. It is by 
no means the only possibility, as other metrics perform well and yield robust 
solutions, but Bray-Curtis similarity will be used in the NMDS ordination in this 
chapter. Other distance metrics, such as the Kulczynski coefficient (Faith et al. 
1987), yield very similar solutions.

In contrast to the eigenanalysis methods, NMDS simply arranges the points in 
n-dimensional space (where n is a number of dimensions, usually two or three, 
chosen by the user) rather than extracting multiple orthogonal axes that explain 
decreasing amounts of variance (Clarke 1993). This has two major implications for 
viewing and interpreting NMDS ordinations. First, axes in an NMDS ordination 
have no specific meaning and the data plot can be rotated, translated, or scaled 
without altering the results, as long as the relative position of the points remains 
unchanged (Clarke 1993). For example, the ordination is unchanged after rotating 
points so that the direction of maximum variability is horizontal to facilitate visual 
comparison with DCA or PCA plots (e.g., Tomasovych and Siblik 2007). Second, 
as the NMDS algorithm specifically arranges the samples to fit in n-dimensional space, 
the best solution for two dimensions will not necessarily be a two-dimensional 
projection of the best solution for three dimensions (Clarke 1993). This contrasts 
with eigenanalysis methods, where many eigenvectors are calculated and a plot of 
axis 1 vs. axis 2 will simply be a two-dimensional projection of the multivariate 
data cloud. Although it is rare to require more than three dimensions, how should 
the number of dimensions be chosen? The iteration will yield a better solution 
(i.e., lower stress) as additional dimensions are included because the original data-
set is multivariate, until the number of dimensions is one less than the number of 
samples. However, a plot of stress against the dimensionality (called a “scree plot,” 
available in some software packages) will often exhibit a distinct break in slope, 
providing a rough guideline for the minimum number of dimensions that should be 
analyzed (Kruskal 1964). It is also reasonable to interpret one extra dimension if 
the ordination results in additional structure (Kruskal 1964). One caveat: the resulting 
ordination plot may be distorted when the specified dimensionality is greater than 
the actual number of dimensions in the original environmental gradient (Austin 1976).

NMDS was adopted slowly due to its intensive computational requirements but 
the calculations are now routine and it is used widely in paleoecological analysis 
(Olszewski and West 1997; Bonuso et al. 2002; Clapham et al. 2003; Dominici and 
Kowalke 2007; Tomasovych and Siblik 2007; Zuschin et al. 2007). Many studies 
have shown that NMDS produces more accurate ordinations than CA/DCA, for 
simulated ecological data at least (Fasham 1977; Kenkel and Orloci 1986; Minchin 
1987), although each technique has individual strengths and weaknesses. In particular, 
NMDS is less susceptible to distortion when beta diversity is high and when there 
are multiple underlying gradients with different beta diversities (Fasham 1977).  
The non-metric technique may be less adept than the eigenanalysis techniques at 
delineating clusters within the data, but may perform better at optimizing relative 
distance between samples even when there are clusters (Kenkel and Orloci 1986). 
As discussed more below, NMDS may be of reduced use when sample size is small; 
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in analyses with fewer than 30 samples, use of rank-order may result in significant 
loss of information (Anderson 1971). Overall, NMDS is a robust ordination technique 
that performs excellently with ecological data.

Figure 1.5 shows NMDS ordination plots for Mistaken Point data using the 
Bray-Curtis similarity coefficient, based on 2D and 3D dimensionality. As discussed 
above, the Bray-Curtis coefficient was designed for comparison of ecological sam-
ples and produces good results with simulated ecological data (Faith et al. 1987). 
Three different low-stress two-dimensional solutions (arbitrarily chosen from many) 
yield virtually the same arrangement of points, differing slightly in the position of 
the three E surface subsamples (Fig. 1.5a–c). In contrast, the three randomly-selected 
3D solutions are highly erratic (the substantial difference in arrangement does not 
result from only viewing two dimensions) (Fig. 1.5d–f). The stress value is lower, 
but recall that stress is always reduced when extra dimensions are added (Kruskal 
1964). The unpredictable performance of the 3D solution may indicate that the 
original environmental gradient was two-dimensional (Austin 1976), but could 
instead result from the small number of samples and low species richness within 
each sample. Replicate random analyses did not converge upon a repeated solution 
of lowest stress, suggesting that there was no single configuration of points that best 
fit the criteria, likely because there were few samples with few shared taxa.

1.5  Comparison and Interpretation of Results

These results raise an obvious question – which ordination yields the “correct” 
ecological representation of Mistaken Point communities? As with all natural data-
sets, there is no objective way of testing the accuracy of the ordination results 
because the positions of samples along the underlying environmental gradients are 
unknown. Analyses of simulated ecological data suggest that DCA and NMDS 
should yield the most accurate and robust results (Fasham 1977; Kenkel and Orloci 
1986; Minchin 1987) and, with the exception of the placement of the PC surface, 
they produce very similar ordination of the data (Fig. 1.6). Note that the NMDS 
ordination has been rotated from the plots in Fig. 1.5 to highlight the similarity with 
the DCA plot, and recall that rotations such as this do not alter the results of the 
ordination. Two primary gradients can be observed: one from samples with abun-
dant Fractofusus to samples with no Fractofusus and also containing more 
Charniodiscus and Bradgatia (vertical axis) and one from samples with abundant 
Pectinifrons to samples with abundant Charnia and “Charnia” B (horizontal axis). 
Placement of the PC surface is erratic with different methods, almost certainly 
because that assemblage only contains three taxa (Thectardis, Ivesheadia, and 
Charnia). DCA ordination places it close to the SH surface because of their shared 
abundance of Ivesheadia, but its position in the NMDS plot closer to the frond-rich 
LMP community (with Charnia), E surface (with Thectardis), and G surface seems 
intuitively more reasonable.
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The next step in an indirect gradient analysis such as DCA or NMDS is inferring 
the environmental, evolutionary, ecological, or other gradients that may have been 
responsible for generating the taxon gradients identified above. This is most often 
accomplished qualitatively by comparing other lines of evidence, for example from 
sedimentological interpretation, to the results of the ordination plot, although it is 
possible to quantitatively include independent lines of evidence using linear regres-
sion (e.g., Clapham et al. 2003). Although the interpretation is less important than 
the methodology for the purposes of this chapter, it may be instructive to briefly 
consider possible interpretations. Because Mistaken Point assemblages span >10 
Myr of time, there is the possibility that evolutionary changes are an important 
control; thus, ordination position may be related to stratigraphic position. 
Stratigraphic position is also an indicator of paleoenvironment at Mistaken Point, 
shallowing upward from basin plain in the lowest samples (PC, BC) to toe-of-slope 
deposits in the Mistaken Point Formation (LMP, D, E, G) to lower slope in the 
uppermost sample (SH) (Wood et al. 2003). There is a broad but weak correspon-
dence between axis 1 position (DCA) and stratigraphic position (Fig. 1.6), excluding 
the PC surface, likely because the BC and LMP samples predate the first appear-
ance of Pectinifrons whereas the SH sample postdates the last appearance of 
Fractofusus. This implies that evolutionary changes in the Mistaken Point biota 
were one of the probable controls on community composition, as expected for 
samples spanning such a long time interval. Clapham et al. (2003) argued that each 
fossil surface may also reflect a snapshot of a different stage within an ecological 
succession trend from Pectinifrons and Fractofusus-dominated early succes-
sional communities to frond-dominated late successional communities. Mistaken 
Point communities have the temporal resolution to preserve a near-instantaneous 
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snapshot of the community at a point in time; although the snapshots occur 
randomly throughout the stratigraphic section. Ordination techniques are ideally 
suited to take a jumbled series of snapshots and organize them into a gradient, 
whether that gradient is related to ecological succession or some other factor. The 
taxonomic gradient inferred for ecological succession can be observed along the 
vertical axis 2 in the DCA and NMDS plots, although it is modified by evolutionary 
changes in the biota along axis 1 (Fig. 1.6). Other ecological characteristics are at 
least consistent with expectations of a succession model (Clapham et al. 2003) but 
more surfaces may be needed to strengthen or falsify the link to ecological succession.

1.6  Conclusion

Quantitative ordination techniques are ideally suited for analyzing multivariate 
community ecology data. Principal Components Analysis (PCA) uses Euclidean 
distance to relate species dissimilarity to distance along the gradient, requiring the 
inappropriate assumption of a linear species response. Because that assumption is 
almost always invalid for community data, PCA ordinations are distorted, often 
severely, into a horseshoe shape or worse, usually making them uninterpretable. 
Although PCA is not suited for ecological ordination, it is still quite appropriate for 
data in morphometric or paleobiogeographic analyses, for example, where the 
dissimilarity-distance response is closer to linear (Chaps. 2 and 3). Detrended 
Correspondence Analysis (DCA) and Non-Metric Multidimensional Scaling 
(NMDS) can both yield accurate ecological ordinations. NMDS performs slightly 
better on simulated ecological data but DCA may be better at extracting the primary 
gradient. Detrending often results in a more accurate ordination of simulated data 
than in unaltered Correspondence Analysis (CA), but has also been criticized for its 
ad hoc methodology and assumptions. Thus, the best approach for analyzing your 
own paleocommunity data depends on the ultimate goal of the study. If you wish to 
identify the primary environmental gradient and reconstruct sample and species 
placement along that gradient, DCA is an excellent approach. If you are instead 
interested in the overall relationship among samples, NMDS may be the best 
option. Since DCA and NMDS ordinations have very complementary strengths, the 
most robust approach is to apply both methods; the overall result should be similar 
and gradients or clusters resolved by both DCA and NMDS are likely to be a good 
reflection of the real underlying ecological structure.
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